Mutation and Conservation

Mutation can critically affect the viability of small populations by causing inbreeding depression, by maintaining potentially adaptive genetic variation in quantitative characters, and through the erosion of fitness by accumulation of mildly detrimental mutations. I review and integrate recent empi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation biology 1995-08, Vol.9 (4), p.782-791
1. Verfasser: Lande, Russell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutation can critically affect the viability of small populations by causing inbreeding depression, by maintaining potentially adaptive genetic variation in quantitative characters, and through the erosion of fitness by accumulation of mildly detrimental mutations. I review and integrate recent empirical and theoretical work on spontaneous mutation and its role in population viability and conservation planning. I analyze both the maintenance of potentially adaptive genetic variation in quantitative characters and the role of detrimental mutations in increasing the extinction risk of small populations. Recent experiments indicate that the rate of production of quasineutral, potentially adaptive genetic variance in quantitative characters is an order of magnitude smaller than the total mutational variance because mutations with large phenotypic effects tend to be strongly detrimental. This implies that, to maintain normal adaptive potential in quantitative characters under a balance between mutation and random genetic drift (or among mutation, drift, and stabilizing natural selection), the effective population size should be about 5000 rather than 500 (the Franklin-Soule number). Recent theoretical results suggest that the risk of extinction due to the fixation of mildly detrimental mutations may be comparable in importance to environmental stochasticity and could substantially decrease the long-term viability of populations with effective sizes as large as a few thousand. These findings suggest that current recovery goals for many threatened and endangered species are inadequate to ensure long-term population viability.
ISSN:0888-8892
1523-1739
DOI:10.1046/j.1523-1739.1995.09040782.x