Site-specific alteration of arginine 376, the unique positively charged amino acid residue in the mid-membrane-spanning regions of the proline carrier of Escherichia coli
An alignment of 5 amino acids in the Escherichia coli proline carrier (G328-A366-L371-GR376) is common in the amino acid sequences of several Na+ symport carriers, and it has been proposed as the putative sodium binding motif (Deguchi, Y., Yamato, I., and Anraku, Y. (1990) J. Biol. Chem. 265, 21704-...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1994-02, Vol.269 (8), p.5720-5724 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An alignment of 5 amino acids in the Escherichia coli proline carrier (G328-A366-L371-GR376) is common in the amino acid sequences
of several Na+ symport carriers, and it has been proposed as the putative sodium binding motif (Deguchi, Y., Yamato, I., and
Anraku, Y. (1990) J. Biol. Chem. 265, 21704-21708). To determine whether these amino acids are essential for Na+ symport activity
as the Na+ binding site, one of the amino acids in this alignment, Arg-376, which is the only positively charged amino acid
in the innermost part of the predicted membrane-spanning regions, was changed to either lysine, glutamine, or glutamic acid
by oligonucleotide dependent site-specific mutagenesis. The transport and binding activities of the proline of the R376K mutant
carrier were not detected at all. The activities of the other mutant carriers for uptake and binding of proline were as high
as those of the wild-type carrier. These two mutant carriers were as sensitive to the proline analogue azetidine-2-carboxylate
and to N-ethylmaleimide as the wild-type carrier, indicating that they have the same properties as the wild-type. The amounts
of the carrier proteins expressed from these mutated putP genes were similar to that from the wild-type gene. These results
imply that the Arg-376 in the proline carrier does not reside at the sodium binding site, suggesting that the similar alignment
found in the amino acid sequences of several Na+ symport carriers is not essential for the transport or binding activities,
although this similar alignment may have some relevance to the structure of the Na+ symporter. Furthermore, that the only
Arg residue in the middle part of the predicted membrane-spanning regions is dispensable for the energy coupling activity
indicates a unique difference of the coupling mechanism from the other secondary active transport systems, such as that of
the lactose permease and the tetracycline/H+ antiporter. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(17)37520-8 |