Water Extracts of Immature Rubus coreanus Regulate Lipid Metabolism in Liver Cells

Hyperlipidemia is a major contributor for atherosclerosis and hypolipidemic drugs such as statin are highly prescribed to treat elevated lipid level in plasma. Rubus coreanus, which is widely cultivated in south eastern Asia, have been reported to show significant cholesterol lowering action in hype...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & pharmaceutical bulletin 2012/11/01, Vol.35(11), pp.1907-1913
Hauptverfasser: Bhandary, Bidur, Lee, Geum-Hwa, Marahatta, Anu, Lee, Hak-Yong, Kim, Sun-Young, So, Byung-Ok, Kwon, Ji-Wung, Song, Ji-Young, Lee, Hee-Kwon, Kim, Hyung-Ryong, Chae, Soo-Wan, Chae, Han-Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperlipidemia is a major contributor for atherosclerosis and hypolipidemic drugs such as statin are highly prescribed to treat elevated lipid level in plasma. Rubus coreanus, which is widely cultivated in south eastern Asia, have been reported to show significant cholesterol lowering action in hyperlipidemic subjects. Our objective was to determine the cellular effect of Rubus coreanus extract (RCE) on cholesterol biosynthesis in human hepatic cells (HepG2) and to elucidate the molecular mechanism by which it causes change in cholesterol metabolism. RCE treatment lowered cholesterol biosynthesis as well as secretion from HepG2 cells. This effect was associated with lowering the release of apolipoproteins from hepatic cells. RCE treatment also showed an increase in phosphorylation of foxhead box protein 01 (FoXo-1) and 5-adenosine monophosphate-activated protein kinase (AMPK), thus lowering expression of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase, which might be a major pathway for cholesterol biosynthesis inhibition. Apart from this; RCE also lowered sterol regulatory element-binding protein-1 (SREBP-1) expression in HepG2 cells, showing a long term regulation of cholesterol biosynthesis activity. These results indicate that one of the anti-hyperlipidemic actions of RCE is due to inhibition of cholesterol biosynthesis in hepatic cells and provides first documentation of a hypolipidemic bio-molecular action of Rubus coreanus.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.b12-00022