Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes

Increased UV-B radiation on the earth's surface due to depletion of stratospheric ozone layer is one of the changes of current climate-change pattern. The deleterious effects of UV-B radiation on photosynthesis and photosynthetic productivity of plants are reviewed. Perusal of relevant literatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. B, Biology Biology, 2014-08, Vol.137, p.55-66
Hauptverfasser: Kataria, Sunita, Jajoo, Anjana, Guruprasad, Kadur N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased UV-B radiation on the earth's surface due to depletion of stratospheric ozone layer is one of the changes of current climate-change pattern. The deleterious effects of UV-B radiation on photosynthesis and photosynthetic productivity of plants are reviewed. Perusal of relevant literature reveals that UV-B radiation inflicts damage to the photosynthetic apparatus of green plants at multiple sites. The sites of damage include oxygen evolving complex, D1/D2 reaction center proteins and other components on the donor and acceptor sides of PS II. The radiation inactivates light harvesting complex II and alters gene expression for synthesis of PS II reaction center proteins. Mn cluster of water oxidation complex is the most important primary target of UV-B stress whereas D1 and D2 proteins, quinone molecules and cytochrome b are the subsequent targets of UV-B. In addition, photosynthetic carbon reduction is also sensitive to UV-B radiation which has a direct effect on the activity and content of Rubisco. Some indirect effects of UV-B radiation include changes in photosynthetic pigments, stomatal conductance and leaf and canopy morphology. The failure of protective mechanisms makes PS II further vulnerable to the UV-B radiation. Reactive oxygen species are involved in UV-B induced responses in plants, both as signaling and damaging agents. Exclusion of ambient UV components under field conditions results in the enhancement of the rate of photosynthesis, PS II efficiency and subsequently increases the biomass accumulation and crop yield. It is concluded that predicted future increase in UV-B irradiation will have significant impact on the photosynthetic efficiency and the productivity of higher plants.
ISSN:1011-1344
1873-2682
DOI:10.1016/j.jphotobiol.2014.02.004