Measurement of electrical charges carried by airborne bacteria laboratory-generated using a single-pass bubbling aerosolizer
Widely used bioaerosol generators like Collison nebulizer probably produce electrostatically charged par- ticles, but the electrical charges carried by laboratory-generated airborne microorganisms using bubbling aerosolizers are poorly understood. In this study, we measured the fraction of neutral p...
Gespeichert in:
Veröffentlicht in: | Particuology 2015-02, Vol.18 (1), p.179-185 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Widely used bioaerosol generators like Collison nebulizer probably produce electrostatically charged par- ticles, but the electrical charges carried by laboratory-generated airborne microorganisms using bubbling aerosolizers are poorly understood. In this study, we measured the fraction of neutral particles and num- ber of elementary charges per particle as a function of the aerodynamic diameter of airborne bacteria (Escherichia coli and Enterococcus hirae). Bioaerosols were produced by a liquid sparging aerosolizer-type bubbling generator, with particle sizes ranging from roughly 0.6 to 2 p~m. The experimental setup included an electrostatic precipitator and real-time devices including an electrometer, aerodynamic particle sizer, and electrical low-pressure impactor. Experimental results obtained for various operating conditions showed that aerosols produced with a higher bubbling airflow contained a larger proportion of neutral particles (from around 30% to 50%) and that bacteria carried a greater average absolute number of elementary charges (from around -10 to -60 elementary units) than those under lower airflow. Under the investigated conditions, a neutralization step is unnecessary because it may have a negative effect on the viability of sensitive microorganisms. Our results suggest that the neutral fraction can be used down- stream of an electrostatic precipitator, and that this setup may have advantages over bipolar neutralizers. |
---|---|
ISSN: | 1674-2001 2210-4291 |
DOI: | 10.1016/j.partic.2014.05.009 |