Canid Progesterone Receptors Lack Activation Function 3 Domain-Dependent Activity
Progesterone regulates multiple behavioral, physiological, and pathological aspects of female reproductive biology through its two progesterone receptors (PRs), PR-B and the truncated PR-A. PR-B is necessary for mammary gland development in mice and, compared with PR-A, is overall a stronger transac...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2012-12, Vol.153 (12), p.6104-6113 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Progesterone regulates multiple behavioral, physiological, and pathological aspects of female reproductive biology through its two progesterone receptors (PRs), PR-B and the truncated PR-A. PR-B is necessary for mammary gland development in mice and, compared with PR-A, is overall a stronger transactivator of target genes due to an additional activation function 3 (AF3) domain. In dogs, known for their high sensitivity to progesterone-induced mammary cancer, the PR-B function was studied. Canine PR (cPR)-B appeared to contain multiple mutations within AF3 core sequence motifs and lacks N-terminal ligand-independent posttranslational modifications. Consequently, cPR-B has a weak transactivation potential on progesterone-responsive mouse mammary tumor virus-luc and progesterone response element 2-luc reporters transiently transfected in hamster, human, or canine cells and also on known target genes FKBP5 and SGK in doxycycline-inducible, stable transfected cPR-B in canine mammary cells. The cPR-B function was restored to the level of human PR-B by the replacement of canine AF3 domain with the human one. The lack of AF3 domain-dependent transcriptional activity was unique for canids (gray wolf, red fox, and raccoon dog) and not present in closely related caniform species (brown bear, gray seal, and domestic ferret). Despite the limited transactivation potential, canids develop normal mammary glands and frequently mammary tumors. Therefore, these results question the role of PR-B in breast cancer development and may explain unique features of canid reproduction. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2012-1793 |