Effects of a thermally stable chlorophyll extract from diatom algae on surface textured Si solar cells
We present the effects of a chlorophyll extract from diatom algae as a spin-coating anti-reflection layer on surface textured silicon solar cells. The diatom extract with a refractive index value in-between Si and air can suppress the overall light reflection from the bare Si surface up to 7% over s...
Gespeichert in:
Veröffentlicht in: | RSC advances 2015-01, Vol.5 (44), p.3532-3536 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the effects of a chlorophyll extract from diatom algae as a spin-coating anti-reflection layer on surface textured silicon solar cells. The diatom extract with a refractive index value in-between Si and air can suppress the overall light reflection from the bare Si surface up to 7% over spectral regions of 350-1100 nm. Additionally, it also shows a strong photon downconversion effect within the visible light regime. Based on both optical characteristics, the short circuit current density is largely enhanced for an approximately 10% increment in the cell efficiency. Additionally, the diatom extract is also thermally stable up to 90 °C without apparent color change and any degradation of optical properties. Thus, the presented approach is simple, doable, suitable for large area application, and more importantly, it is eco-friendly.
We present the effects of a chlorophyll extract from diatom algae as a spin-coating anti-reflection layer on surface textured silicon solar cells. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c5ra00265f |