Thrombopoietin Induces Megakaryocyte Differentiation in Hematopoietic Progenitor FDC-P2 Cells (∗)

Thrombopoietin (Tpo) is a cytokine that specifically regulates megakaryocyte maturation and platelet production. Little is known about the molecular and cellular mechanism of the Tpo-induced megakaryocyte maturation process including polyploidization and platelet release. To study Tpo-induced megaka...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1995-08, Vol.270 (34), p.19673-19675
Hauptverfasser: Nagata, Yuka, Nagahisa, Hiroshi, Aida, Yoko, Okutomi, Keiichi, Nagasawa, Toshiro, Todokoro, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thrombopoietin (Tpo) is a cytokine that specifically regulates megakaryocyte maturation and platelet production. Little is known about the molecular and cellular mechanism of the Tpo-induced megakaryocyte maturation process including polyploidization and platelet release. To study Tpo-induced megakaryocyte differentiation, a mouse cell line FD-TPO, which responds and grows with Tpo, was established from a interleukin-3-dependent hematopoietic progenitor cell line FDC-P2. The FD-TPO cells, expressing endogenous Tpo receptor, grew with Tpo in a dose-dependent manner. Further, Tpo stimulation dramatically induced expression of megakaryocyte/erythroid-specific transcription factors GATA-1 and NF-E2 in FD-TPO cells. Flow cytometry analysis demonstrated that expression of platelet-specific cell surface antigens including CD61 (GPIIIa) dramatically increased in Tpo-stimulated FD-TPO cells and that expression of myeloid-specific antigens, Gr-1 and Mac-1, decreased. Therefore, we concluded that the binding of Tpo to FD-TPO cells induces not only cell growth but also differentiation into mature megakaryocyte-like cells, and thus this cell line was found to be useful for the study of Tpo receptor-mediated growth and differentiation signals.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.34.19673