Predicting two-dimensional turbulence

Prediction is a fundamental objective of science. It is more difficult for chaotic and complex systems like turbulence. Here we use information theory to quantify spatial prediction using experimental data from a turbulent soap film. At high Reynolds number, Re, where a cascade exists, turbulence be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-04, Vol.91 (4), p.043003-043003, Article 043003
Hauptverfasser: Cerbus, R T, Goldburg, W I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prediction is a fundamental objective of science. It is more difficult for chaotic and complex systems like turbulence. Here we use information theory to quantify spatial prediction using experimental data from a turbulent soap film. At high Reynolds number, Re, where a cascade exists, turbulence becomes easier to predict as the inertial range broadens. The development of a cascade at low Re is also detected.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.91.043003