A multidomain discretization of the Richards equation in layered soil
We consider the Richards equation on a domain that is decomposed into nonoverlapping layers, i.e., the decomposition has no cross points. We assume that the saturation and permeability functions are space-independent on each subdomain. Kirchhoff transformation of each subdomain problem separately th...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2015-02, Vol.19 (1), p.213-232 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 1 |
container_start_page | 213 |
container_title | Computational geosciences |
container_volume | 19 |
creator | Berninger, Heiko Kornhuber, Ralf Sander, Oliver |
description | We consider the Richards equation on a domain that is decomposed into nonoverlapping layers, i.e., the decomposition has no cross points. We assume that the saturation and permeability functions are space-independent on each subdomain. Kirchhoff transformation of each subdomain problem separately then leads to a set of semilinear equations, which can each be solved efficiently using monotone multigrid. The transformed subdomain problems are coupled by nonlinear continuity and flux conditions. This nonlinear coupled problem can be solved using substructuring methods like the Dirichlet–Neumann or Robin iteration. We give several numerical examples showing the discretization error, the solver robustness under variations of the soil parameters, and a hydrological example with four soil layers and surface water. |
doi_str_mv | 10.1007/s10596-014-9461-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686440082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686440082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-ea817d309316fed9237379c2948f6cd37d2abae5464d489ee86545b636ca087b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RZJPNx7GU-gGCIHoO6WbWpuxu2mT3UH-9KetBBE8zMM_7MjwIXVNyRwmR94mSSgtMKMeaC4rVCZrRSjJMudaneeclwRmR5-gipS0hREtGZ2i1KLqxHbwLnfV94XyqIwz-yw4-9EVoimEDxZuvNza6VMB-nA4Zbe0BIrgiBd9eorPGtgmufuYcfTys3pdP-OX18Xm5eME1L6sBg1VUOkY0o6IBp0smmdR1qblqRO2YdKVdW6i44I4rDaBExau1YKK2RMk1m6PbqXcXw36ENJguPwxta3sIYzJUKME5IarM6M0fdBvG2OfvMiWlpJwRnik6UXUMKUVozC76zsaDocQcxZpJrMlizVGsUTlTTpmU2f4T4q_mf0PfJZ959g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677714304</pqid></control><display><type>article</type><title>A multidomain discretization of the Richards equation in layered soil</title><source>Springer Nature - Complete Springer Journals</source><creator>Berninger, Heiko ; Kornhuber, Ralf ; Sander, Oliver</creator><creatorcontrib>Berninger, Heiko ; Kornhuber, Ralf ; Sander, Oliver</creatorcontrib><description>We consider the Richards equation on a domain that is decomposed into nonoverlapping layers, i.e., the decomposition has no cross points. We assume that the saturation and permeability functions are space-independent on each subdomain. Kirchhoff transformation of each subdomain problem separately then leads to a set of semilinear equations, which can each be solved efficiently using monotone multigrid. The transformed subdomain problems are coupled by nonlinear continuity and flux conditions. This nonlinear coupled problem can be solved using substructuring methods like the Dirichlet–Neumann or Robin iteration. We give several numerical examples showing the discretization error, the solver robustness under variations of the soil parameters, and a hydrological example with four soil layers and surface water.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-014-9461-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Decomposition ; Discretization ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Joining ; Layered soils ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematical problems ; Nonlinearity ; Original Paper ; Soil Science & Conservation ; Surface water</subject><ispartof>Computational geosciences, 2015-02, Vol.19 (1), p.213-232</ispartof><rights>Springer International Publishing Switzerland 2014</rights><rights>Springer International Publishing Switzerland 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-ea817d309316fed9237379c2948f6cd37d2abae5464d489ee86545b636ca087b3</citedby><cites>FETCH-LOGICAL-c425t-ea817d309316fed9237379c2948f6cd37d2abae5464d489ee86545b636ca087b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-014-9461-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-014-9461-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Berninger, Heiko</creatorcontrib><creatorcontrib>Kornhuber, Ralf</creatorcontrib><creatorcontrib>Sander, Oliver</creatorcontrib><title>A multidomain discretization of the Richards equation in layered soil</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>We consider the Richards equation on a domain that is decomposed into nonoverlapping layers, i.e., the decomposition has no cross points. We assume that the saturation and permeability functions are space-independent on each subdomain. Kirchhoff transformation of each subdomain problem separately then leads to a set of semilinear equations, which can each be solved efficiently using monotone multigrid. The transformed subdomain problems are coupled by nonlinear continuity and flux conditions. This nonlinear coupled problem can be solved using substructuring methods like the Dirichlet–Neumann or Robin iteration. We give several numerical examples showing the discretization error, the solver robustness under variations of the soil parameters, and a hydrological example with four soil layers and surface water.</description><subject>Decomposition</subject><subject>Discretization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Joining</subject><subject>Layered soils</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Soil Science & Conservation</subject><subject>Surface water</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RZJPNx7GU-gGCIHoO6WbWpuxu2mT3UH-9KetBBE8zMM_7MjwIXVNyRwmR94mSSgtMKMeaC4rVCZrRSjJMudaneeclwRmR5-gipS0hREtGZ2i1KLqxHbwLnfV94XyqIwz-yw4-9EVoimEDxZuvNza6VMB-nA4Zbe0BIrgiBd9eorPGtgmufuYcfTys3pdP-OX18Xm5eME1L6sBg1VUOkY0o6IBp0smmdR1qblqRO2YdKVdW6i44I4rDaBExau1YKK2RMk1m6PbqXcXw36ENJguPwxta3sIYzJUKME5IarM6M0fdBvG2OfvMiWlpJwRnik6UXUMKUVozC76zsaDocQcxZpJrMlizVGsUTlTTpmU2f4T4q_mf0PfJZ959g</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Berninger, Heiko</creator><creator>Kornhuber, Ralf</creator><creator>Sander, Oliver</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150201</creationdate><title>A multidomain discretization of the Richards equation in layered soil</title><author>Berninger, Heiko ; Kornhuber, Ralf ; Sander, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-ea817d309316fed9237379c2948f6cd37d2abae5464d489ee86545b636ca087b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decomposition</topic><topic>Discretization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Joining</topic><topic>Layered soils</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Soil Science & Conservation</topic><topic>Surface water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berninger, Heiko</creatorcontrib><creatorcontrib>Kornhuber, Ralf</creatorcontrib><creatorcontrib>Sander, Oliver</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berninger, Heiko</au><au>Kornhuber, Ralf</au><au>Sander, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multidomain discretization of the Richards equation in layered soil</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>213</spage><epage>232</epage><pages>213-232</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>We consider the Richards equation on a domain that is decomposed into nonoverlapping layers, i.e., the decomposition has no cross points. We assume that the saturation and permeability functions are space-independent on each subdomain. Kirchhoff transformation of each subdomain problem separately then leads to a set of semilinear equations, which can each be solved efficiently using monotone multigrid. The transformed subdomain problems are coupled by nonlinear continuity and flux conditions. This nonlinear coupled problem can be solved using substructuring methods like the Dirichlet–Neumann or Robin iteration. We give several numerical examples showing the discretization error, the solver robustness under variations of the soil parameters, and a hydrological example with four soil layers and surface water.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-014-9461-8</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2015-02, Vol.19 (1), p.213-232 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686440082 |
source | Springer Nature - Complete Springer Journals |
subjects | Decomposition Discretization Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences Hydrogeology Joining Layered soils Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematical models Mathematical problems Nonlinearity Original Paper Soil Science & Conservation Surface water |
title | A multidomain discretization of the Richards equation in layered soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multidomain%20discretization%20of%20the%20Richards%20equation%20in%20layered%20soil&rft.jtitle=Computational%20geosciences&rft.au=Berninger,%20Heiko&rft.date=2015-02-01&rft.volume=19&rft.issue=1&rft.spage=213&rft.epage=232&rft.pages=213-232&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-014-9461-8&rft_dat=%3Cproquest_cross%3E1686440082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677714304&rft_id=info:pmid/&rfr_iscdi=true |