A multidomain discretization of the Richards equation in layered soil

We consider the Richards equation on a domain that is decomposed into nonoverlapping layers, i.e., the decomposition has no cross points. We assume that the saturation and permeability functions are space-independent on each subdomain. Kirchhoff transformation of each subdomain problem separately th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2015-02, Vol.19 (1), p.213-232
Hauptverfasser: Berninger, Heiko, Kornhuber, Ralf, Sander, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Richards equation on a domain that is decomposed into nonoverlapping layers, i.e., the decomposition has no cross points. We assume that the saturation and permeability functions are space-independent on each subdomain. Kirchhoff transformation of each subdomain problem separately then leads to a set of semilinear equations, which can each be solved efficiently using monotone multigrid. The transformed subdomain problems are coupled by nonlinear continuity and flux conditions. This nonlinear coupled problem can be solved using substructuring methods like the Dirichlet–Neumann or Robin iteration. We give several numerical examples showing the discretization error, the solver robustness under variations of the soil parameters, and a hydrological example with four soil layers and surface water.
ISSN:1420-0597
1573-1499
DOI:10.1007/s10596-014-9461-8