Improving As(III) adsorption on graphene based surfaces: impact of chemical doping

On the basis of quantum chemistry calculations, the adsorption of As(III) onto graphene based adsorbents has been studied. The energetic and molecular properties that characterize the adsorption have been analyzed, and new adsorbents were proposed. The experimentally reported inefficient adsorption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2015-05, Vol.17 (18), p.12056-12064
Hauptverfasser: Cortés-Arriagada, Diego, Toro-Labbé, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the basis of quantum chemistry calculations, the adsorption of As(III) onto graphene based adsorbents has been studied. The energetic and molecular properties that characterize the adsorption have been analyzed, and new adsorbents were proposed. The experimentally reported inefficient adsorption of As(III) by intrinsic graphene is theoretically characterized by a low adsorption energy (∼0.3 eV), which is decreased by solvent effects. Two stable conformations were found for the adsorbent-adsorbate systems. The As(III) removal by unmodified oxidized graphene (GO) reaches a medium size adsorption strength (∼1 eV), even stable considering a solvent environment. The efficiency of the adsorbents for As(III) removal is sorted as Al-G > Fe-G ≫ Si-G ≫ GO ≫ G. Therefore, Al, Si and Fe doped graphene are considered as potential materials for efficient As(III) removal.
ISSN:1463-9076
1463-9084
DOI:10.1039/c5cp01313e