Transreal Calculus
Transreal arithmetic totalises real arithmetic by defining division by zero in terms of three definite, non-finite numbers: positive infinity, negative infinity and nullity. We describe the transreal tangent function and extend continuity and limits from the real domain to the transreal domain. With...
Gespeichert in:
Veröffentlicht in: | IAENG international journal of applied mathematics 2015-03, Vol.45 (1), p.51-63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transreal arithmetic totalises real arithmetic by defining division by zero in terms of three definite, non-finite numbers: positive infinity, negative infinity and nullity. We describe the transreal tangent function and extend continuity and limits from the real domain to the transreal domain. With this preparation, we extend the real derivative to the transreal derivative and extend proper integration from the real domain to the transreal domain. Further, we extend improper integration of absolutely convergent functions from the real domain to the transreal domain. This demonstrates that transreal calculus contains real calculus and operates at singularities where real calculus fails. |
---|---|
ISSN: | 1992-9978 1992-9986 |