Crystallization and preliminary X-ray crystallographic study of a 3.8-MDa respiratory supermolecule hemocyanin
Many molluscs transport oxygen using a very large cylindrical multimeric copper-containing protein named hemocyanin. The molluscan hemocyanin forms a decamer (cephalopods) or multidecamer (gastropods) of approximately 330–450kDa subunits, resulting in a molecular mass >3.3MDa. Therefore, mollusca...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2015-06, Vol.190 (3), p.379-382 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many molluscs transport oxygen using a very large cylindrical multimeric copper-containing protein named hemocyanin. The molluscan hemocyanin forms a decamer (cephalopods) or multidecamer (gastropods) of approximately 330–450kDa subunits, resulting in a molecular mass >3.3MDa. Therefore, molluscan hemocyanin is one of the largest proteins. The reason why these organisms use such a large supermolecule for oxygen transport remains unclear. Atomic-resolution X-ray crystallographic analysis is necessary to unveil the detailed molecular structure of this mysterious large molecule. However, its propensity to dissociate in solution has hampered the crystallization of its intact form. In the present study, we successfully obtained the first crystals of an intact decameric molluscan hemocyanin. The diffraction dataset at 3.0-Å resolution was collected by merging the datasets of two isomorphic crystals. Electron microscopy analysis of the dissolved crystals revealed cylindrical particles. Furthermore, self-rotation function analysis clearly showed the presence of a fivefold symmetry with several twofold symmetries perpendicular to the fivefold axis. The absorption spectrum of the crystals showed an absorption peak around 345nm. These results indicated that the crystals contain intact hemocyanin decamers in the oxygen-bound form. |
---|---|
ISSN: | 1047-8477 1095-8657 |
DOI: | 10.1016/j.jsb.2015.04.015 |