The regulation and function of the helix-loop-helix gene, asense, in Drosophila neural precursors

asense is a member of the achaete-scute complex (AS-C) of helix-loop-helix genes involved in Drosophila neurogenesis. Unlike the other AS-C members, which are expressed in subsets of the ectodermal areas (proneural clusters) that give rise to neural precursors, asense is one of a number of genes tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 1993-09, Vol.119 (1), p.19-29
Hauptverfasser: JARMAN, A. P, BRAND, M, JAN, L. Y, YUH NUNG JAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:asense is a member of the achaete-scute complex (AS-C) of helix-loop-helix genes involved in Drosophila neurogenesis. Unlike the other AS-C members, which are expressed in subsets of the ectodermal areas (proneural clusters) that give rise to neural precursors, asense is one of a number of genes that are specifically expressed in the neural precursors themselves (neural precursor genes). We have identified a mutant asense phenotype that may reflect this later expression pattern. As a step in understanding the determination of neural precursors from the proneural clusters, we have investigated the potential role of the AS-C products as direct transcriptional activators of neural precursor genes by analysing the regulation of asense. Using genomic rescues and asense-lacZ fusion genes, the neural precursor regulatory element has been identified. We show that this element contains binding sites for AS-C/daughterless heterodimers. Delection of these sites reduces the expression from the fusion gene, but significant expression is still achieved, pointing to the existence of other regulators of asense in addition to the AS-C. asense differs from the other AS-C members in its expression pattern, regulation, mutant phenotype and some DNA-binding properities.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.119.1.19