Newly Observed Temperature and Surface Ligand Dependence of Electron Mobility in Indium Oxide Nanocrystals Solids
We developed a new class of organic surface ligands; 2-aminopyridine (2AP), 4-aminobenzoic acid (4ABA), and benzoic acid (BA); for use in the solution ligand exchange of nanocrystals (NCs) in the presence of nitric acid (HNO3). Here, colloidal NCs synthesis is used for the first time. These short, a...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-06, Vol.7 (21), p.11660-11667 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We developed a new class of organic surface ligands; 2-aminopyridine (2AP), 4-aminobenzoic acid (4ABA), and benzoic acid (BA); for use in the solution ligand exchange of nanocrystals (NCs) in the presence of nitric acid (HNO3). Here, colloidal NCs synthesis is used for the first time. These short, air-stable, easy-to-model ligands bind to the surface of the indium oxide nanocrystal (In2O3 NC) and provide the electrostatic stabilization of NC semiconductor dispersions in N,N-dimethylformamide, allowing for a solution-based deposition of NCs into thin-film transitors (TFTs). The shorter organic ligands greatly facilitate electronic coupling between the NCs. For example, thin films made from 2AP-capped In2O3 NCs exhibited a high electron mobility of μ ≈ 9.5 cm2/(V·s), an on–off current ratio of about >107, and a subthreshold swing of 2.34 V/decade. As the ligand length decreased, the electron mobility increased exponentially. Furthermore, we also report on the temperature-dependent behavior of the electron transport of In2O3 NCs films, in the case in which thin films were cured at 150 °C, as the 2AP, BA, and 4ABA ligand molecules were sustained on the NC. We demonstrated a hopping transport mechanism instead of a band-like transport, and the thermally activated carrier transport process governed the charge transport in our In2O3 NC thin-film solid. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b02971 |