Warpage Analysis of Single and Dual Gates Designed for Injection Moulding Using Response Surface Methodology

This study focuses on the analysis of plastic injection moulding process simulation using Autodesk Moldflow Insight (AMI) software in order to correlate between process parameters as an input and warpage as an output for single and dual gates mould design. Nessei NEX 1000 injection moulding machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-04, Vol.754-755 (Advanced Materials Engineering and Technology III), p.775-783
Hauptverfasser: Fairuz, M.A., Nasir, S.M., Ismail, Khairul Azwan, Shayfull, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focuses on the analysis of plastic injection moulding process simulation using Autodesk Moldflow Insight (AMI) software in order to correlate between process parameters as an input and warpage as an output for single and dual gates mould design. Nessei NEX 1000 injection moulding machine and P20 mould material details are incorporated in this study on top of Acrylonitrile Butadiene Styrene (ABS) as a moulded thermoplastic material. Coolant inlet temperature, material melt temperature, packing pressure and packing time are selected as a variable parameter. Design Expert software is obtained as a medium for analysis and optimization of input variables in order to minimize the warpage. RSM method as well as Analysis of Variance (ANOVA) has been applied in this study. The results of ANOVA show that some interactions between factors are significant towards warpage existence, which is coolant inlet temperature, material melt temperature and packing pressure. Furthermore, the model created using RSM can be used for warpage prediction and improvement due to a minimum value of error. From this study, the dual gate is the best solution which able to improve the warpage up to 80% instead of single.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.754-755.775