Using dynamical downscaling to examine mechanisms contributing to the intensification of Central U.S. heavy rainfall events

The frequency and intensity of heavy rainfall events have increased in the Central U.S. over the last several decades, and model projections from dynamical downscaling suggest a continuation with climate change. In this study, we examine how climate change might affect mechanisms related to the deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2015-04, Vol.120 (7), p.2754-2772
Hauptverfasser: Harding, Keith J., Snyder, Peter K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The frequency and intensity of heavy rainfall events have increased in the Central U.S. over the last several decades, and model projections from dynamical downscaling suggest a continuation with climate change. In this study, we examine how climate change might affect mechanisms related to the development of heavy rainfall events that occur on the scale of mesoscale convective systems over the Central U.S. To accomplish these goals, we incorporate dynamical downscaled simulations of two Coupled Model Intercomparison Project phase 5 models in the Weather Research and Forecasting model that accurately simulate heavy rainfall events. For each model, a set of heavy rainfall events that match the frequency, timing, and intensity of observed events are objectively identified in historical and future simulations. We then examine multimodel composites of select atmospheric fields during these events in simulations of historical and future scenarios, enabling an identification of possible physical mechanisms that could contribute to the intensification of heavy rainfall events with climate change. Simulations show that additional moisture is transported into convective updrafts during heavy rain events in future simulations, driving stronger evaporative cooling from the entrainment of drier midtropospheric air. This results in the formation of a stronger low‐level cold pool, which enhances moisture convergence above the cold pool and increases rainfall rates during future heavy precipitation events. In addition, a warmer profile in future simulations might allow for heavier rainfall rates as a deeper atmospheric column can support additional collision‐coalescence of liquid hydrometeors. Key Points Projections of future Central U.S. summer heavy rainfall events using WRF Heavy rainfall events more intense and more frequent in future simulations Heavier rainfall rates related to stronger cold pool from additional moisture
ISSN:2169-897X
2169-8996
DOI:10.1002/2014JD022819