A Parametric Study of Reversible Jet-Fan Blades Aerodynamic Performance
This paper presents a fully reversible blade parametric design methodology. The blades are for application in jet fans that ventilate and provide emergency smoke control in road tunnels. The blade design variables are tip solidity, twist, and camber distribution. The authors base the design methodol...
Gespeichert in:
Veröffentlicht in: | Journal of engineering for gas turbines and power 2013-02, Vol.135 (2), p.1-4 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a fully reversible blade parametric design methodology. The blades are for application in jet fans that ventilate and provide emergency smoke control in road tunnels. The blade design variables are tip solidity, twist, and camber distribution. The authors base the design methodology on a sensitivity analysis which they derived from a response surface approximation. They construct the latter using a computational analysis of four experimental cases which they generated using an experimental design approach. The sensitivity analysis calculates a rank and a weight for each design variable that affects the jet-fan performance parameters thrust and efficiency, and thus facilitates insight into each variable's relative importance. Finally, the authors present a redesign of an existing reversible jet-fan blade by following the design guidelines which they obtained from the sensitivity analysis. The authors study the aerodynamic characteristics of the redesigned blade and compare it to that of the baseline design configuration. They then manufacture a redesigned blade prototype. Finally, the authors present thrust and power measurements for both the baseline jet fan, and the baseline jet fan when fitted with a redesigned blade. |
---|---|
ISSN: | 0742-4795 1528-8919 |
DOI: | 10.1115/1.4007758 |