New Lower Bounds on Circuit Size of Multi-output Functions
Let B n , m be the set of all Boolean functions from {0, 1} n to {0, 1} m , B n = B n , 1 and U 2 = B 2 ∖{⊕, ≡}. In this paper, we prove the following two new lower bounds on the circuit size over U 2 . A lower bound C U 2 ( f ) ≥ 5 n − o ( n ) for a linear function f ∈ B n − 1,log n . The lower bou...
Gespeichert in:
Veröffentlicht in: | Theory of computing systems 2015-05, Vol.56 (4), p.630-642 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
B
n
,
m
be the set of all Boolean functions from {0, 1}
n
to {0, 1}
m
,
B
n
=
B
n
, 1
and
U
2
=
B
2
∖{⊕, ≡}. In this paper, we prove the following two new lower bounds on the circuit size over
U
2
.
A lower bound
C
U
2
(
f
)
≥
5
n
−
o
(
n
)
for a linear function
f
∈
B
n
− 1,log
n
. The lower bound follows from the following more general result: for any matrix
A
∈ {0, 1}
m
×
n
with
n
pairwise different non-zero columns and
b
∈ {0, 1}
m
,
C
U
2
(
A
x
⊕
b
)
≥
5
(
n
−
m
)
.
A lower bound
C
U
2
(
f
)
≥
7
n
−
o
(
n
)
for
f
∈
B
n
,
n
. Again, this is a consequence of the following result: for any
f
∈
B
n
satisfying a certain simple property,
C
U
2
(
g
(
f
)
)
≥
min
{
C
U
2
(
f
|
x
i
=
a
,
x
j
=
b
)
:
x
i
≠
x
j
,
a
,
b
,
∈
{
0
,
1
}
}
+
2
n
−
Θ
(
1
)
where
g
(
f
) ∈
B
n
,
n
is defined as follows:
g
(
f
) = (
f
⊕
x
1
, … ,
f
⊕
x
n
) (to get a 7
n
−
o
(
n
) lower bound it remains to plug in a known function
f
∈
B
n
, 1
with
C
U
2
(
f
)
≥
5
n
−
o
(
n
)
). |
---|---|
ISSN: | 1432-4350 1433-0490 |
DOI: | 10.1007/s00224-014-9590-4 |