Completions of Alternating Sign Matrices
We consider the problem of completing a ( 0 , - 1 ) -matrix to an alternating sign matrix (ASM) by replacing some 0 s with - 1 s. An algorithm can be given to determine a completion or show that one does not exist. We are concerned primarily with bordered-permutation ( 0 , - 1 ) matrices, defined to...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2015-05, Vol.31 (3), p.507-522 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of completing a
(
0
,
-
1
)
-matrix to an alternating sign matrix (ASM) by replacing some
0
s with
-
1
s. An algorithm can be given to determine a completion or show that one does not exist. We are concerned primarily with bordered-permutation
(
0
,
-
1
)
matrices, defined to be
n
×
n
(
0
,
-
1
)
-matrices with only
0
s in their first and last rows and columns where the
-
1
s form an
(
n
-
2
)
×
(
n
-
2
)
permutation matrix. We show that any such matrix can be completed to an ASM and characterize those that have a unique completion. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-014-1409-1 |