Completions of Alternating Sign Matrices

We consider the problem of completing a ( 0 , - 1 ) -matrix to an alternating sign matrix (ASM) by replacing some 0 s with - 1 s. An algorithm can be given to determine a completion or show that one does not exist. We are concerned primarily with bordered-permutation ( 0 , - 1 ) matrices, defined to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2015-05, Vol.31 (3), p.507-522
Hauptverfasser: Brualdi, Richard A., Kim, Hwa Kyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of completing a ( 0 , - 1 ) -matrix to an alternating sign matrix (ASM) by replacing some 0 s with - 1 s. An algorithm can be given to determine a completion or show that one does not exist. We are concerned primarily with bordered-permutation ( 0 , - 1 ) matrices, defined to be n × n ( 0 , - 1 ) -matrices with only 0 s in their first and last rows and columns where the - 1 s form an ( n - 2 ) × ( n - 2 ) permutation matrix. We show that any such matrix can be completed to an ASM and characterize those that have a unique completion.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-014-1409-1