Phase stability and rapid consolidation of hydroxyapatite–zirconia nano-coprecipitates made using continuous hydrothermal flow synthesis
A rapid and continuous hydrothermal route for the synthesis of nano-sized hydroxyapatite rods co-precipitated with calcium-doped zirconia nanoparticles using a superheated water flow at 450°C and 24.1 MPa as a crystallizing medium is described. Hydroxyapatite and calcium-doped zirconia phases in the...
Gespeichert in:
Veröffentlicht in: | Journal of biomaterials applications 2012-07, Vol.27 (1), p.79-90 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A rapid and continuous hydrothermal route for the synthesis of nano-sized hydroxyapatite rods co-precipitated with calcium-doped zirconia nanoparticles using a superheated water flow at 450°C and 24.1 MPa as a crystallizing medium is described. Hydroxyapatite and calcium-doped zirconia phases in the powder mixtures could be clearly identified based on particle size and morphology under transmission electron microscopy. Retention of a nanostructure after sintering is crucial to load-bearing applications of hydroxyapatite-based ceramics. Therefore, rapid consolidation of the co-precipitates was investigated using a spark plasma sintering furnace under a range of processing conditions. Samples nominally containing 5 and 10 wt% calcium-doped zirconia and hydroxyapatite made with Ca:P solution molar ratio 2.5 showed excellent thermal stability (investigated using in situ variable temperature X-ray diffraction) and were sintered via spark plasma sintering to >96% sintered densities at 1000°C resulting in hydroxyapatite and calcium-doped zirconia as the only two phases. Mechanical tests of spark plasma sintering sintered samples (containing 10 wt% calcium-doped zirconia) revealed a three-pt flexural strength of 107.7 MPa and Weibull modulus of 9.9. The complementary nature of the spark plasma sintering technique and continuous hydrothermal flow synthesis (which results in retention of a nanostructure even after sintering at elevated temperatures) was hence showcased. |
---|---|
ISSN: | 0885-3282 1530-8022 |
DOI: | 10.1177/0885328212444483 |