A new particular solution strategy for hyperbolic boundary value problems using hybrid-Trefftz displacement elements

SummaryA new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2015-05, Vol.102 (6), p.1293-1315
1. Verfasser: Moldovan, I. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1315
container_issue 6
container_start_page 1293
container_title International journal for numerical methods in engineering
container_volume 102
creator Moldovan, I. D.
description SummaryA new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric functions, the method reported here uses the homogeneous solutions of the problem obtained by discarding all time‐derivative terms from the governing equation. Nevertheless, what typifies the present approach from a conceptual standpoint is the option of not using these trial functions exclusively for the approximation of the particular solution but to fully integrate them with the (Trefftz‐compliant) homogeneous solution basis. The particular solution trial basis is capable of significantly improving the Trefftz solution even when the original equation is genuinely homogeneous, an advantage that is lost if the basis is used exclusively for the recovery of the source terms. Similarly, a sufficiently refined Trefftz‐compliant basis is able to compensate for possible weaknesses of the particular solution approximation. The method is implemented using the displacement model of the hybrid‐Trefftz finite element method. The functions used in the particular solution basis reduce most terms of the matrix of coefficients to boundary integral expressions and preserve the Hermitian, sparse and localized structure of the solving system that typifies hybrid‐Trefftz formulations. Even when domain integrals are present, they are generally easy to handle, because the integrand presents no singularity. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4836
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685803784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3657264711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4016-d0e102bc0de854512b29769e4be4d372e562b031b0671d66bf693b7a6a2729393</originalsourceid><addsrcrecordid>eNpdkE1P3DAURa2qSEyhEj_BUjfdBJ7txE6WCNEpYoANqEvLTl6oqfNR24FOfz0eQEXq6i7e0X1Xh5AjBscMgJ-MAx6XtZAfyIpBowrgoD6SVT41RdXUbJ98ivEBgLEKxIqkUzriE51NSK5dvAk0Tn5JbhppTMEkvN_Sfgr053bGYCfvWmqnZexM2NJH4xekc5isxyHSJbrxPoM2uK64Ddj36S_tXJy9aXHAMVH0LxkPyV5vfMTPb3lA7r6d3559LzY364uz003RlsBk0QEy4LaFDuuqrBi3vFGywdJi2QnFsZLcgmAWpGKdlLaXjbDKSMMVb0QjDsjX19688feCMenBxRa9NyNOS9RM1lUNQtVlRr_8hz5MSxjzukwpUfP8b0cVr9ST87jVc3BDFqEZ6J17nd3rnXt9fXW-y3fexYR__vEm_NK5VFX6x_VaX67lRoAUeiOeATjiiLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673823724</pqid></control><display><type>article</type><title>A new particular solution strategy for hyperbolic boundary value problems using hybrid-Trefftz displacement elements</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Moldovan, I. D.</creator><creatorcontrib>Moldovan, I. D.</creatorcontrib><description>SummaryA new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric functions, the method reported here uses the homogeneous solutions of the problem obtained by discarding all time‐derivative terms from the governing equation. Nevertheless, what typifies the present approach from a conceptual standpoint is the option of not using these trial functions exclusively for the approximation of the particular solution but to fully integrate them with the (Trefftz‐compliant) homogeneous solution basis. The particular solution trial basis is capable of significantly improving the Trefftz solution even when the original equation is genuinely homogeneous, an advantage that is lost if the basis is used exclusively for the recovery of the source terms. Similarly, a sufficiently refined Trefftz‐compliant basis is able to compensate for possible weaknesses of the particular solution approximation. The method is implemented using the displacement model of the hybrid‐Trefftz finite element method. The functions used in the particular solution basis reduce most terms of the matrix of coefficients to boundary integral expressions and preserve the Hermitian, sparse and localized structure of the solving system that typifies hybrid‐Trefftz formulations. Even when domain integrals are present, they are generally easy to handle, because the integrand presents no singularity. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4836</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Approximation ; Boundary value problems ; Displacement ; hybrid-Trefftz displacement finite element ; Integrals ; Mathematical analysis ; Mathematical models ; non-homogeneous hyperbolic problems ; Numerical analysis ; particular solution ; Polynomials ; Preserves</subject><ispartof>International journal for numerical methods in engineering, 2015-05, Vol.102 (6), p.1293-1315</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4016-d0e102bc0de854512b29769e4be4d372e562b031b0671d66bf693b7a6a2729393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4836$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4836$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Moldovan, I. D.</creatorcontrib><title>A new particular solution strategy for hyperbolic boundary value problems using hybrid-Trefftz displacement elements</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SummaryA new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric functions, the method reported here uses the homogeneous solutions of the problem obtained by discarding all time‐derivative terms from the governing equation. Nevertheless, what typifies the present approach from a conceptual standpoint is the option of not using these trial functions exclusively for the approximation of the particular solution but to fully integrate them with the (Trefftz‐compliant) homogeneous solution basis. The particular solution trial basis is capable of significantly improving the Trefftz solution even when the original equation is genuinely homogeneous, an advantage that is lost if the basis is used exclusively for the recovery of the source terms. Similarly, a sufficiently refined Trefftz‐compliant basis is able to compensate for possible weaknesses of the particular solution approximation. The method is implemented using the displacement model of the hybrid‐Trefftz finite element method. The functions used in the particular solution basis reduce most terms of the matrix of coefficients to boundary integral expressions and preserve the Hermitian, sparse and localized structure of the solving system that typifies hybrid‐Trefftz formulations. Even when domain integrals are present, they are generally easy to handle, because the integrand presents no singularity. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Displacement</subject><subject>hybrid-Trefftz displacement finite element</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>non-homogeneous hyperbolic problems</subject><subject>Numerical analysis</subject><subject>particular solution</subject><subject>Polynomials</subject><subject>Preserves</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1P3DAURa2qSEyhEj_BUjfdBJ7txE6WCNEpYoANqEvLTl6oqfNR24FOfz0eQEXq6i7e0X1Xh5AjBscMgJ-MAx6XtZAfyIpBowrgoD6SVT41RdXUbJ98ivEBgLEKxIqkUzriE51NSK5dvAk0Tn5JbhppTMEkvN_Sfgr053bGYCfvWmqnZexM2NJH4xekc5isxyHSJbrxPoM2uK64Ddj36S_tXJy9aXHAMVH0LxkPyV5vfMTPb3lA7r6d3559LzY364uz003RlsBk0QEy4LaFDuuqrBi3vFGywdJi2QnFsZLcgmAWpGKdlLaXjbDKSMMVb0QjDsjX19688feCMenBxRa9NyNOS9RM1lUNQtVlRr_8hz5MSxjzukwpUfP8b0cVr9ST87jVc3BDFqEZ6J17nd3rnXt9fXW-y3fexYR__vEm_NK5VFX6x_VaX67lRoAUeiOeATjiiLs</recordid><startdate>20150511</startdate><enddate>20150511</enddate><creator>Moldovan, I. D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150511</creationdate><title>A new particular solution strategy for hyperbolic boundary value problems using hybrid-Trefftz displacement elements</title><author>Moldovan, I. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4016-d0e102bc0de854512b29769e4be4d372e562b031b0671d66bf693b7a6a2729393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Displacement</topic><topic>hybrid-Trefftz displacement finite element</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>non-homogeneous hyperbolic problems</topic><topic>Numerical analysis</topic><topic>particular solution</topic><topic>Polynomials</topic><topic>Preserves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moldovan, I. D.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moldovan, I. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new particular solution strategy for hyperbolic boundary value problems using hybrid-Trefftz displacement elements</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2015-05-11</date><risdate>2015</risdate><volume>102</volume><issue>6</issue><spage>1293</spage><epage>1315</epage><pages>1293-1315</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SummaryA new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric functions, the method reported here uses the homogeneous solutions of the problem obtained by discarding all time‐derivative terms from the governing equation. Nevertheless, what typifies the present approach from a conceptual standpoint is the option of not using these trial functions exclusively for the approximation of the particular solution but to fully integrate them with the (Trefftz‐compliant) homogeneous solution basis. The particular solution trial basis is capable of significantly improving the Trefftz solution even when the original equation is genuinely homogeneous, an advantage that is lost if the basis is used exclusively for the recovery of the source terms. Similarly, a sufficiently refined Trefftz‐compliant basis is able to compensate for possible weaknesses of the particular solution approximation. The method is implemented using the displacement model of the hybrid‐Trefftz finite element method. The functions used in the particular solution basis reduce most terms of the matrix of coefficients to boundary integral expressions and preserve the Hermitian, sparse and localized structure of the solving system that typifies hybrid‐Trefftz formulations. Even when domain integrals are present, they are generally easy to handle, because the integrand presents no singularity. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4836</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2015-05, Vol.102 (6), p.1293-1315
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1685803784
source Wiley Online Library - AutoHoldings Journals
subjects Approximation
Boundary value problems
Displacement
hybrid-Trefftz displacement finite element
Integrals
Mathematical analysis
Mathematical models
non-homogeneous hyperbolic problems
Numerical analysis
particular solution
Polynomials
Preserves
title A new particular solution strategy for hyperbolic boundary value problems using hybrid-Trefftz displacement elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20particular%20solution%20strategy%20for%20hyperbolic%20boundary%20value%20problems%20using%20hybrid-Trefftz%20displacement%20elements&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Moldovan,%20I.%E2%80%89D.&rft.date=2015-05-11&rft.volume=102&rft.issue=6&rft.spage=1293&rft.epage=1315&rft.pages=1293-1315&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4836&rft_dat=%3Cproquest_wiley%3E3657264711%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673823724&rft_id=info:pmid/&rfr_iscdi=true