A new particular solution strategy for hyperbolic boundary value problems using hybrid-Trefftz displacement elements
SummaryA new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2015-05, Vol.102 (6), p.1293-1315 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SummaryA new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric functions, the method reported here uses the homogeneous solutions of the problem obtained by discarding all time‐derivative terms from the governing equation. Nevertheless, what typifies the present approach from a conceptual standpoint is the option of not using these trial functions exclusively for the approximation of the particular solution but to fully integrate them with the (Trefftz‐compliant) homogeneous solution basis. The particular solution trial basis is capable of significantly improving the Trefftz solution even when the original equation is genuinely homogeneous, an advantage that is lost if the basis is used exclusively for the recovery of the source terms. Similarly, a sufficiently refined Trefftz‐compliant basis is able to compensate for possible weaknesses of the particular solution approximation. The method is implemented using the displacement model of the hybrid‐Trefftz finite element method. The functions used in the particular solution basis reduce most terms of the matrix of coefficients to boundary integral expressions and preserve the Hermitian, sparse and localized structure of the solving system that typifies hybrid‐Trefftz formulations. Even when domain integrals are present, they are generally easy to handle, because the integrand presents no singularity. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.4836 |