Thermocapillary Actuation of Millimeter-Scale Rotary Structures

In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2014-04, Vol.23 (2), p.494-499
Hauptverfasser: Hendarto, Erwin, Gianchandani, Yogesh B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 2
container_start_page 494
container_title Journal of microelectromechanical systems
container_volume 23
creator Hendarto, Erwin
Gianchandani, Yogesh B.
description In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous operation of resistor elements is used to impose a spatially-defined temperature gradient on the surface of the liquid. With a maximum temperature gradient of 36.6 K/mm at the surface of a 2 mm-thick film of liquid with viscosity 5 cSt, a stainless steel rotary structure with a weight of ≈ 10 mg, a diameter of 4.1 mm, and blade angle of 34° takes 28 s to make a 360° rotation. In general, the angular velocity of the rotary structure is affected by the temperature gradient of the liquid surface and liquid viscosity among several factors.
doi_str_mv 10.1109/JMEMS.2013.2281328
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685798554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6606811</ieee_id><sourcerecordid>3266338681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a9f5a6293be9e4b50fb6720d37df82096e732588812ab3526b0c157e145ed8363</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt_QC8BEbyk7uz3nqSU-kWLYOt52aQTTGmSupsc_PdubenB0yyzzwzvPElyDWQEQMzD23w6X4woATaiVAOj-iQZgOGQERD6NL6JUJkCoc6TixDWhADnWg6Sx-UX-rot3LbabJz_ScdF17uuapu0LdN5bFY1duizReE2mH603Q5adL6PnMdwmZyVbhPw6lCHyefTdDl5yWbvz6-T8SwrOOVd5kwpnKSG5WiQ54KUuVSUrJhalZoSI1ExKrTWQF3OBJU5KWJYBC5wpZlkw-R-v3fr2-8eQ2frKhQYMzfY9sGC1EIZLQSP6O0_dN32vonpLAigUkkjaKTonip8G4LH0m59VcfjLBC7c2r_nNqdU3twGofuDqtdiD5K75qiCsdJqjnTREHkbvZchYjHbymJ1ADsF0sTfhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512676952</pqid></control><display><type>article</type><title>Thermocapillary Actuation of Millimeter-Scale Rotary Structures</title><source>IEEE Xplore / Electronic Library Online (IEL)</source><creator>Hendarto, Erwin ; Gianchandani, Yogesh B.</creator><creatorcontrib>Hendarto, Erwin ; Gianchandani, Yogesh B.</creatorcontrib><description>In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous operation of resistor elements is used to impose a spatially-defined temperature gradient on the surface of the liquid. With a maximum temperature gradient of 36.6 K/mm at the surface of a 2 mm-thick film of liquid with viscosity 5 cSt, a stainless steel rotary structure with a weight of ≈ 10 mg, a diameter of 4.1 mm, and blade angle of 34° takes 28 s to make a 360° rotation. In general, the angular velocity of the rotary structure is affected by the temperature gradient of the liquid surface and liquid viscosity among several factors.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2013.2281328</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Angular velocity ; Applied fluid mechanics ; Arrays ; Blades ; Convection and heat transfer ; Design engineering ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Heat sources ; Heating ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Liquids ; Marangoni effect ; Mechanical instruments, equipment and techniques ; microfluidics ; Micromechanical devices and systems ; Physics ; Resistors ; rotary structure ; Surface tension ; Temperature gradient ; thermal actuation ; thermocapillary ; Thin films ; Torque ; Turbulent flows, convection, and heat transfer ; Viscosity</subject><ispartof>Journal of microelectromechanical systems, 2014-04, Vol.23 (2), p.494-499</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a9f5a6293be9e4b50fb6720d37df82096e732588812ab3526b0c157e145ed8363</citedby><cites>FETCH-LOGICAL-c424t-a9f5a6293be9e4b50fb6720d37df82096e732588812ab3526b0c157e145ed8363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6606811$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6606811$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28438071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendarto, Erwin</creatorcontrib><creatorcontrib>Gianchandani, Yogesh B.</creatorcontrib><title>Thermocapillary Actuation of Millimeter-Scale Rotary Structures</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous operation of resistor elements is used to impose a spatially-defined temperature gradient on the surface of the liquid. With a maximum temperature gradient of 36.6 K/mm at the surface of a 2 mm-thick film of liquid with viscosity 5 cSt, a stainless steel rotary structure with a weight of ≈ 10 mg, a diameter of 4.1 mm, and blade angle of 34° takes 28 s to make a 360° rotation. In general, the angular velocity of the rotary structure is affected by the temperature gradient of the liquid surface and liquid viscosity among several factors.</description><subject>Acceleration</subject><subject>Angular velocity</subject><subject>Applied fluid mechanics</subject><subject>Arrays</subject><subject>Blades</subject><subject>Convection and heat transfer</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat sources</subject><subject>Heating</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Liquids</subject><subject>Marangoni effect</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>microfluidics</subject><subject>Micromechanical devices and systems</subject><subject>Physics</subject><subject>Resistors</subject><subject>rotary structure</subject><subject>Surface tension</subject><subject>Temperature gradient</subject><subject>thermal actuation</subject><subject>thermocapillary</subject><subject>Thin films</subject><subject>Torque</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Viscosity</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt_QC8BEbyk7uz3nqSU-kWLYOt52aQTTGmSupsc_PdubenB0yyzzwzvPElyDWQEQMzD23w6X4woATaiVAOj-iQZgOGQERD6NL6JUJkCoc6TixDWhADnWg6Sx-UX-rot3LbabJz_ScdF17uuapu0LdN5bFY1duizReE2mH603Q5adL6PnMdwmZyVbhPw6lCHyefTdDl5yWbvz6-T8SwrOOVd5kwpnKSG5WiQ54KUuVSUrJhalZoSI1ExKrTWQF3OBJU5KWJYBC5wpZlkw-R-v3fr2-8eQ2frKhQYMzfY9sGC1EIZLQSP6O0_dN32vonpLAigUkkjaKTonip8G4LH0m59VcfjLBC7c2r_nNqdU3twGofuDqtdiD5K75qiCsdJqjnTREHkbvZchYjHbymJ1ADsF0sTfhI</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Hendarto, Erwin</creator><creator>Gianchandani, Yogesh B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20140401</creationdate><title>Thermocapillary Actuation of Millimeter-Scale Rotary Structures</title><author>Hendarto, Erwin ; Gianchandani, Yogesh B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a9f5a6293be9e4b50fb6720d37df82096e732588812ab3526b0c157e145ed8363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceleration</topic><topic>Angular velocity</topic><topic>Applied fluid mechanics</topic><topic>Arrays</topic><topic>Blades</topic><topic>Convection and heat transfer</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat sources</topic><topic>Heating</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Liquids</topic><topic>Marangoni effect</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>microfluidics</topic><topic>Micromechanical devices and systems</topic><topic>Physics</topic><topic>Resistors</topic><topic>rotary structure</topic><topic>Surface tension</topic><topic>Temperature gradient</topic><topic>thermal actuation</topic><topic>thermocapillary</topic><topic>Thin films</topic><topic>Torque</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendarto, Erwin</creatorcontrib><creatorcontrib>Gianchandani, Yogesh B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hendarto, Erwin</au><au>Gianchandani, Yogesh B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermocapillary Actuation of Millimeter-Scale Rotary Structures</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>23</volume><issue>2</issue><spage>494</spage><epage>499</epage><pages>494-499</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous operation of resistor elements is used to impose a spatially-defined temperature gradient on the surface of the liquid. With a maximum temperature gradient of 36.6 K/mm at the surface of a 2 mm-thick film of liquid with viscosity 5 cSt, a stainless steel rotary structure with a weight of ≈ 10 mg, a diameter of 4.1 mm, and blade angle of 34° takes 28 s to make a 360° rotation. In general, the angular velocity of the rotary structure is affected by the temperature gradient of the liquid surface and liquid viscosity among several factors.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2013.2281328</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2014-04, Vol.23 (2), p.494-499
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_miscellaneous_1685798554
source IEEE Xplore / Electronic Library Online (IEL)
subjects Acceleration
Angular velocity
Applied fluid mechanics
Arrays
Blades
Convection and heat transfer
Design engineering
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Heat sources
Heating
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Liquids
Marangoni effect
Mechanical instruments, equipment and techniques
microfluidics
Micromechanical devices and systems
Physics
Resistors
rotary structure
Surface tension
Temperature gradient
thermal actuation
thermocapillary
Thin films
Torque
Turbulent flows, convection, and heat transfer
Viscosity
title Thermocapillary Actuation of Millimeter-Scale Rotary Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermocapillary%20Actuation%20of%20Millimeter-Scale%20Rotary%20Structures&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Hendarto,%20Erwin&rft.date=2014-04-01&rft.volume=23&rft.issue=2&rft.spage=494&rft.epage=499&rft.pages=494-499&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2013.2281328&rft_dat=%3Cproquest_RIE%3E3266338681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512676952&rft_id=info:pmid/&rft_ieee_id=6606811&rfr_iscdi=true