Thermocapillary Actuation of Millimeter-Scale Rotary Structures
In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous opera...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2014-04, Vol.23 (2), p.494-499 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 2 |
container_start_page | 494 |
container_title | Journal of microelectromechanical systems |
container_volume | 23 |
creator | Hendarto, Erwin Gianchandani, Yogesh B. |
description | In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous operation of resistor elements is used to impose a spatially-defined temperature gradient on the surface of the liquid. With a maximum temperature gradient of 36.6 K/mm at the surface of a 2 mm-thick film of liquid with viscosity 5 cSt, a stainless steel rotary structure with a weight of ≈ 10 mg, a diameter of 4.1 mm, and blade angle of 34° takes 28 s to make a 360° rotation. In general, the angular velocity of the rotary structure is affected by the temperature gradient of the liquid surface and liquid viscosity among several factors. |
doi_str_mv | 10.1109/JMEMS.2013.2281328 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685798554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6606811</ieee_id><sourcerecordid>3266338681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a9f5a6293be9e4b50fb6720d37df82096e732588812ab3526b0c157e145ed8363</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt_QC8BEbyk7uz3nqSU-kWLYOt52aQTTGmSupsc_PdubenB0yyzzwzvPElyDWQEQMzD23w6X4woATaiVAOj-iQZgOGQERD6NL6JUJkCoc6TixDWhADnWg6Sx-UX-rot3LbabJz_ScdF17uuapu0LdN5bFY1duizReE2mH603Q5adL6PnMdwmZyVbhPw6lCHyefTdDl5yWbvz6-T8SwrOOVd5kwpnKSG5WiQ54KUuVSUrJhalZoSI1ExKrTWQF3OBJU5KWJYBC5wpZlkw-R-v3fr2-8eQ2frKhQYMzfY9sGC1EIZLQSP6O0_dN32vonpLAigUkkjaKTonip8G4LH0m59VcfjLBC7c2r_nNqdU3twGofuDqtdiD5K75qiCsdJqjnTREHkbvZchYjHbymJ1ADsF0sTfhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512676952</pqid></control><display><type>article</type><title>Thermocapillary Actuation of Millimeter-Scale Rotary Structures</title><source>IEEE Xplore / Electronic Library Online (IEL)</source><creator>Hendarto, Erwin ; Gianchandani, Yogesh B.</creator><creatorcontrib>Hendarto, Erwin ; Gianchandani, Yogesh B.</creatorcontrib><description>In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous operation of resistor elements is used to impose a spatially-defined temperature gradient on the surface of the liquid. With a maximum temperature gradient of 36.6 K/mm at the surface of a 2 mm-thick film of liquid with viscosity 5 cSt, a stainless steel rotary structure with a weight of ≈ 10 mg, a diameter of 4.1 mm, and blade angle of 34° takes 28 s to make a 360° rotation. In general, the angular velocity of the rotary structure is affected by the temperature gradient of the liquid surface and liquid viscosity among several factors.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2013.2281328</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Angular velocity ; Applied fluid mechanics ; Arrays ; Blades ; Convection and heat transfer ; Design engineering ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Heat sources ; Heating ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Liquids ; Marangoni effect ; Mechanical instruments, equipment and techniques ; microfluidics ; Micromechanical devices and systems ; Physics ; Resistors ; rotary structure ; Surface tension ; Temperature gradient ; thermal actuation ; thermocapillary ; Thin films ; Torque ; Turbulent flows, convection, and heat transfer ; Viscosity</subject><ispartof>Journal of microelectromechanical systems, 2014-04, Vol.23 (2), p.494-499</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a9f5a6293be9e4b50fb6720d37df82096e732588812ab3526b0c157e145ed8363</citedby><cites>FETCH-LOGICAL-c424t-a9f5a6293be9e4b50fb6720d37df82096e732588812ab3526b0c157e145ed8363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6606811$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6606811$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendarto, Erwin</creatorcontrib><creatorcontrib>Gianchandani, Yogesh B.</creatorcontrib><title>Thermocapillary Actuation of Millimeter-Scale Rotary Structures</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous operation of resistor elements is used to impose a spatially-defined temperature gradient on the surface of the liquid. With a maximum temperature gradient of 36.6 K/mm at the surface of a 2 mm-thick film of liquid with viscosity 5 cSt, a stainless steel rotary structure with a weight of ≈ 10 mg, a diameter of 4.1 mm, and blade angle of 34° takes 28 s to make a 360° rotation. In general, the angular velocity of the rotary structure is affected by the temperature gradient of the liquid surface and liquid viscosity among several factors.</description><subject>Acceleration</subject><subject>Angular velocity</subject><subject>Applied fluid mechanics</subject><subject>Arrays</subject><subject>Blades</subject><subject>Convection and heat transfer</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat sources</subject><subject>Heating</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Liquids</subject><subject>Marangoni effect</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>microfluidics</subject><subject>Micromechanical devices and systems</subject><subject>Physics</subject><subject>Resistors</subject><subject>rotary structure</subject><subject>Surface tension</subject><subject>Temperature gradient</subject><subject>thermal actuation</subject><subject>thermocapillary</subject><subject>Thin films</subject><subject>Torque</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Viscosity</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt_QC8BEbyk7uz3nqSU-kWLYOt52aQTTGmSupsc_PdubenB0yyzzwzvPElyDWQEQMzD23w6X4woATaiVAOj-iQZgOGQERD6NL6JUJkCoc6TixDWhADnWg6Sx-UX-rot3LbabJz_ScdF17uuapu0LdN5bFY1duizReE2mH603Q5adL6PnMdwmZyVbhPw6lCHyefTdDl5yWbvz6-T8SwrOOVd5kwpnKSG5WiQ54KUuVSUrJhalZoSI1ExKrTWQF3OBJU5KWJYBC5wpZlkw-R-v3fr2-8eQ2frKhQYMzfY9sGC1EIZLQSP6O0_dN32vonpLAigUkkjaKTonip8G4LH0m59VcfjLBC7c2r_nNqdU3twGofuDqtdiD5K75qiCsdJqjnTREHkbvZchYjHbymJ1ADsF0sTfhI</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Hendarto, Erwin</creator><creator>Gianchandani, Yogesh B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20140401</creationdate><title>Thermocapillary Actuation of Millimeter-Scale Rotary Structures</title><author>Hendarto, Erwin ; Gianchandani, Yogesh B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a9f5a6293be9e4b50fb6720d37df82096e732588812ab3526b0c157e145ed8363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceleration</topic><topic>Angular velocity</topic><topic>Applied fluid mechanics</topic><topic>Arrays</topic><topic>Blades</topic><topic>Convection and heat transfer</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat sources</topic><topic>Heating</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Liquids</topic><topic>Marangoni effect</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>microfluidics</topic><topic>Micromechanical devices and systems</topic><topic>Physics</topic><topic>Resistors</topic><topic>rotary structure</topic><topic>Surface tension</topic><topic>Temperature gradient</topic><topic>thermal actuation</topic><topic>thermocapillary</topic><topic>Thin films</topic><topic>Torque</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendarto, Erwin</creatorcontrib><creatorcontrib>Gianchandani, Yogesh B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hendarto, Erwin</au><au>Gianchandani, Yogesh B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermocapillary Actuation of Millimeter-Scale Rotary Structures</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>23</volume><issue>2</issue><spage>494</spage><epage>499</epage><pages>494-499</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, we describe the rotary motion, by Marangoni flow, of a millimeter-scale rotary structure immersed in a thin layer of liquid. A 16 × 8 array of 1 × 0.8 × 0.3 mm 3 surface-mount resistors is suspended ≈ 500 μm above the liquid to serve as a programmable heat source. The continuous operation of resistor elements is used to impose a spatially-defined temperature gradient on the surface of the liquid. With a maximum temperature gradient of 36.6 K/mm at the surface of a 2 mm-thick film of liquid with viscosity 5 cSt, a stainless steel rotary structure with a weight of ≈ 10 mg, a diameter of 4.1 mm, and blade angle of 34° takes 28 s to make a 360° rotation. In general, the angular velocity of the rotary structure is affected by the temperature gradient of the liquid surface and liquid viscosity among several factors.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2013.2281328</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2014-04, Vol.23 (2), p.494-499 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685798554 |
source | IEEE Xplore / Electronic Library Online (IEL) |
subjects | Acceleration Angular velocity Applied fluid mechanics Arrays Blades Convection and heat transfer Design engineering Exact sciences and technology Fluid dynamics Fluidics Fundamental areas of phenomenology (including applications) Heat sources Heating Instruments, apparatus, components and techniques common to several branches of physics and astronomy Liquids Marangoni effect Mechanical instruments, equipment and techniques microfluidics Micromechanical devices and systems Physics Resistors rotary structure Surface tension Temperature gradient thermal actuation thermocapillary Thin films Torque Turbulent flows, convection, and heat transfer Viscosity |
title | Thermocapillary Actuation of Millimeter-Scale Rotary Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermocapillary%20Actuation%20of%20Millimeter-Scale%20Rotary%20Structures&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Hendarto,%20Erwin&rft.date=2014-04-01&rft.volume=23&rft.issue=2&rft.spage=494&rft.epage=499&rft.pages=494-499&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2013.2281328&rft_dat=%3Cproquest_RIE%3E3266338681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512676952&rft_id=info:pmid/&rft_ieee_id=6606811&rfr_iscdi=true |