Automatically inferring loop invariants via algorithmic learning

By combining algorithmic learning, decision procedures, predicate abstraction and simple templates for quantified formulae, we present an automated technique for finding loop invariants. Theoretically, this technique can find arbitrary first-order invariants (modulo a fixed set of atomic proposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2015-05, Vol.25 (4), p.892-915
Hauptverfasser: JUNG, YUNGBUM, KONG, SOONHO, DAVID, CRISTINA, WANG, BOW-YAW, YI, KWANGKEUN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By combining algorithmic learning, decision procedures, predicate abstraction and simple templates for quantified formulae, we present an automated technique for finding loop invariants. Theoretically, this technique can find arbitrary first-order invariants (modulo a fixed set of atomic propositions and an underlying satisfiability modulo theories solver) in the form of the given template and exploit the flexibility in invariants by a simple randomized mechanism. In our study, the proposed technique was able to find quantified invariants for loops from the Linux source and other realistic programs. Our contribution is a simpler technique than the previous works yet with a reasonable derivation power.
ISSN:0960-1295
1469-8072
DOI:10.1017/S0960129513000078