In situ characterization of Cu-Co oxides for catalytic application

In situ emission and absorption FTIR methods were employed to characterize the spatially resolved structure of binary Co-Cu oxides for low-temperature oxidation of CO and propene. Co-Cu oxide catalysts were controllably synthesized by pulsed-spray evaporation chemical vapor deposition. XRD, FTIR, XP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2015-01, Vol.177, p.249-262
Hauptverfasser: Tian, Z Y, Vieker, H, Kouotou, P Mountapmbeme, Beyer, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In situ emission and absorption FTIR methods were employed to characterize the spatially resolved structure of binary Co-Cu oxides for low-temperature oxidation of CO and propene. Co-Cu oxide catalysts were controllably synthesized by pulsed-spray evaporation chemical vapor deposition. XRD, FTIR, XPS, UV-vis and helium ion microscopy (HIM) were employed to characterize the as-prepared thin films in terms of structure, composition, optical and thermal properties as well as morphology. In situ emission FTIR spectroscopy indicates that Co3O4, CuCo2O4 and CuO are thermally stable at 650, 655 and 450 °C, respectively. The catalytic tests with absorption FTIR display that the involvement of Co-Cu oxides can initiate CO and C3H6 oxidation at lower temperatures. The results indicate that in situ emission and absorption FTIR are useful techniques to explore the thermal properties and catalytic performance of functional materials, allowing many potential applications in tailoring their temporally and spatially resolved structure-property relationships.
ISSN:1359-6640
1364-5498
DOI:10.1039/c4fd00192c