ELM-based name disambiguation in bibliography
It is common that different people share the same name. When it occurs in bibliography databases, it worsens the performance of information retrieval and data management. In this paper, we address the problem of name disambiguation and propose two different strategies, one classifier for each name (...
Gespeichert in:
Veröffentlicht in: | World wide web (Bussum) 2015-03, Vol.18 (2), p.253-263 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is common that different people share the same name. When it occurs in bibliography databases, it worsens the performance of information retrieval and data management. In this paper, we address the problem of name disambiguation and propose two different strategies, one classifier for each name (OCEN) and one classifier for all names (OCAN). Both strategies OCEN and OCAN are based on extreme learning machine (ELM) which shows similar or better generalization performance and faster learning speed than support vector machines (SVM) and least squares support vector machines (LS-SVM). We conduct experiments to compare the performance of ELM, SVM and LS-SVM in the two strategies. |
---|---|
ISSN: | 1386-145X 1573-1413 |
DOI: | 10.1007/s11280-013-0226-4 |