Time-reversal invariant realization of the Weyl semimetal phase

We propose a realization of the Weyl semimetal phase that is invariant under time reversal and occurs due to broken inversion symmetry. We consider both a simple superlattice model and a more realistic tight-binding model describing an experimentally reasonable HgTe/CdTe multilayer structure. The tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-01, Vol.85 (3), Article 035103
Hauptverfasser: Halász, Gábor B., Balents, Leon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a realization of the Weyl semimetal phase that is invariant under time reversal and occurs due to broken inversion symmetry. We consider both a simple superlattice model and a more realistic tight-binding model describing an experimentally reasonable HgTe/CdTe multilayer structure. The two models have the same underlying symmetry, therefore their low-energy features are equivalent. We find a Weyl semimetal phase between the normal insulator and the topological insulator phases that exists for a finite range of the system parameters and exhibits a finite number of Weyl points with robust band touching at the Fermi level. This phase is experimentally characterized by a strong conductivity anisotropy and topological surface states. The principal conductivities change in a complementary fashion as the system parameters are varied, and the surface states only exist in a region of momentum space that is determined by the positions of the Weyl points.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.85.035103