Benthic metabolism and nitrogen dynamics in an urbanised tidal creek: Domination of DNRA over denitrification as a nitrate reduction pathway

Benthic oxygen and nutrient fluxes and nitrate reduction rates were determined seasonally under light and dark conditions at three sites in a micro-tidal creek within an urbanised catchment (Saltwater Creek, Australia). It was hypothesized that stormwater inputs of organic matter and inorganic nitro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuarine, coastal and shelf science coastal and shelf science, 2013-10, Vol.131, p.271-281
Hauptverfasser: Dunn, Ryan J.K., Robertson, David, Teasdale, Peter R., Waltham, Nathan J., Welsh, David T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Benthic oxygen and nutrient fluxes and nitrate reduction rates were determined seasonally under light and dark conditions at three sites in a micro-tidal creek within an urbanised catchment (Saltwater Creek, Australia). It was hypothesized that stormwater inputs of organic matter and inorganic nitrogen would stimulate rates of benthic metabolism and nutrient recycling and preferentially stimulate dissimilatory nitrate reduction to ammonium (DNRA) over denitrification as a pathway for nitrate reduction. Stormwaters greatly influenced water column dissolved inorganic nitrogen (DIN) and suspended solids concentrations with values following a large rainfall event being 5–20-fold greater than during the preceding dry period. Seasonally, maximum and minimum water column total dissolved nitrogen (TDN) and DIN concentrations occurred in the summer (wet) and winter (dry) seasons. Creek sediments were highly heterotrophic throughout the year, and strong sinks for oxygen, and large sources of dissolved organic and inorganic nitrogen during both light and dark incubations, although micro-phytobenthos (MPB) significantly decreased oxygen consumption and N-effluxes during light incubations due to photosynthetic oxygen production and photoassimilation of nutrients. Benthic denitrification rates ranged from 3.5 to 17.7 μmol N m2 h−1, denitrification efficiencies were low (
ISSN:0272-7714
1096-0015
DOI:10.1016/j.ecss.2013.06.027