Noncommutative martingale deviation and Poincaré type inequalities with applications

We prove a deviation inequality for noncommutative martingales by extending Oliveira’s argument for random matrices. By integration we obtain a Burkholder type inequality with satisfactory constant. Using continuous time, we establish noncommutative Poincaré type inequalities for “nice” semigroups w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2015-04, Vol.161 (3-4), p.449-507
Hauptverfasser: Junge, Marius, Zeng, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 3-4
container_start_page 449
container_title Probability theory and related fields
container_volume 161
creator Junge, Marius
Zeng, Qiang
description We prove a deviation inequality for noncommutative martingales by extending Oliveira’s argument for random matrices. By integration we obtain a Burkholder type inequality with satisfactory constant. Using continuous time, we establish noncommutative Poincaré type inequalities for “nice” semigroups with a positive curvature condition. These results allow us to prove a general deviation inequality and a noncommutative transportation inequality due to Bobkov and Götze in the commutative case. To demonstrate our setting is general enough, we give various examples, including certain group von Neumann algebras, random matrices and classical diffusion processes, among others.
doi_str_mv 10.1007/s00440-014-0552-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685788756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685788756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3351-9665fd600a874af621073f238f641f31e98267fa4f9c5d1cacb0bae163df06a63</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoOF4ewF3BjZvqOUmapEsZvIGoC12HmCZjhk7aaVplHsnn8MXsOC5E0NWBw_f9HM5PyBHCKQLIswTAOeSAPIeioDlukQlyRnMKgm-TCaBUuYICd8leSnMAoIzTCXm6a6JtFouhN314ddnCdH2IM1O7rHKvYVw2MTOxyh6aEK3pPt6zftW6LES3HEwd-uBS9hb6l8y0bR3sl5AOyI43dXKH33OfPF1ePE6v89v7q5vp-W1uGSswL4UofCUAjJLceEERJPOUKS84eoauVFRIb7gvbVGhNfYZno1DwSoPwgi2T042uW3XLAeXer0Iybq6NtE1Q9IoVCGVksUaPf6Fzpuhi-N1mgqBVPKSl_9RKCSWqlR8nYUbynZNSp3zuu3C-LmVRtDrOvSmDj3Wodd1aBwdunHSyMaZ634k_yl9Arc0jSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671989846</pqid></control><display><type>article</type><title>Noncommutative martingale deviation and Poincaré type inequalities with applications</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Junge, Marius ; Zeng, Qiang</creator><creatorcontrib>Junge, Marius ; Zeng, Qiang</creatorcontrib><description>We prove a deviation inequality for noncommutative martingales by extending Oliveira’s argument for random matrices. By integration we obtain a Burkholder type inequality with satisfactory constant. Using continuous time, we establish noncommutative Poincaré type inequalities for “nice” semigroups with a positive curvature condition. These results allow us to prove a general deviation inequality and a noncommutative transportation inequality due to Bobkov and Götze in the commutative case. To demonstrate our setting is general enough, we give various examples, including certain group von Neumann algebras, random matrices and classical diffusion processes, among others.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-014-0552-1</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Brownian motion ; Constants ; Deviation ; Diffusion ; Economics ; Finance ; Group theory ; Inequalities ; Inequality ; Insurance ; Management ; Martingales ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Studies ; Theoretical ; Transportation</subject><ispartof>Probability theory and related fields, 2015-04, Vol.161 (3-4), p.449-507</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3351-9665fd600a874af621073f238f641f31e98267fa4f9c5d1cacb0bae163df06a63</citedby><cites>FETCH-LOGICAL-c3351-9665fd600a874af621073f238f641f31e98267fa4f9c5d1cacb0bae163df06a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-014-0552-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-014-0552-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Zeng, Qiang</creatorcontrib><title>Noncommutative martingale deviation and Poincaré type inequalities with applications</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We prove a deviation inequality for noncommutative martingales by extending Oliveira’s argument for random matrices. By integration we obtain a Burkholder type inequality with satisfactory constant. Using continuous time, we establish noncommutative Poincaré type inequalities for “nice” semigroups with a positive curvature condition. These results allow us to prove a general deviation inequality and a noncommutative transportation inequality due to Bobkov and Götze in the commutative case. To demonstrate our setting is general enough, we give various examples, including certain group von Neumann algebras, random matrices and classical diffusion processes, among others.</description><subject>Algebra</subject><subject>Brownian motion</subject><subject>Constants</subject><subject>Deviation</subject><subject>Diffusion</subject><subject>Economics</subject><subject>Finance</subject><subject>Group theory</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Insurance</subject><subject>Management</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Theoretical</subject><subject>Transportation</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctKxDAUhoMoOF4ewF3BjZvqOUmapEsZvIGoC12HmCZjhk7aaVplHsnn8MXsOC5E0NWBw_f9HM5PyBHCKQLIswTAOeSAPIeioDlukQlyRnMKgm-TCaBUuYICd8leSnMAoIzTCXm6a6JtFouhN314ddnCdH2IM1O7rHKvYVw2MTOxyh6aEK3pPt6zftW6LES3HEwd-uBS9hb6l8y0bR3sl5AOyI43dXKH33OfPF1ePE6v89v7q5vp-W1uGSswL4UofCUAjJLceEERJPOUKS84eoauVFRIb7gvbVGhNfYZno1DwSoPwgi2T042uW3XLAeXer0Iybq6NtE1Q9IoVCGVksUaPf6Fzpuhi-N1mgqBVPKSl_9RKCSWqlR8nYUbynZNSp3zuu3C-LmVRtDrOvSmDj3Wodd1aBwdunHSyMaZ634k_yl9Arc0jSU</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Junge, Marius</creator><creator>Zeng, Qiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150401</creationdate><title>Noncommutative martingale deviation and Poincaré type inequalities with applications</title><author>Junge, Marius ; Zeng, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3351-9665fd600a874af621073f238f641f31e98267fa4f9c5d1cacb0bae163df06a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Brownian motion</topic><topic>Constants</topic><topic>Deviation</topic><topic>Diffusion</topic><topic>Economics</topic><topic>Finance</topic><topic>Group theory</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Insurance</topic><topic>Management</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Theoretical</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Zeng, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junge, Marius</au><au>Zeng, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncommutative martingale deviation and Poincaré type inequalities with applications</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>161</volume><issue>3-4</issue><spage>449</spage><epage>507</epage><pages>449-507</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We prove a deviation inequality for noncommutative martingales by extending Oliveira’s argument for random matrices. By integration we obtain a Burkholder type inequality with satisfactory constant. Using continuous time, we establish noncommutative Poincaré type inequalities for “nice” semigroups with a positive curvature condition. These results allow us to prove a general deviation inequality and a noncommutative transportation inequality due to Bobkov and Götze in the commutative case. To demonstrate our setting is general enough, we give various examples, including certain group von Neumann algebras, random matrices and classical diffusion processes, among others.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-014-0552-1</doi><tpages>59</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2015-04, Vol.161 (3-4), p.449-507
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_1685788756
source SpringerLink Journals; Business Source Complete
subjects Algebra
Brownian motion
Constants
Deviation
Diffusion
Economics
Finance
Group theory
Inequalities
Inequality
Insurance
Management
Martingales
Mathematical analysis
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Statistics for Business
Studies
Theoretical
Transportation
title Noncommutative martingale deviation and Poincaré type inequalities with applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncommutative%20martingale%20deviation%20and%20Poincar%C3%A9%20type%20inequalities%20with%20applications&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Junge,%20Marius&rft.date=2015-04-01&rft.volume=161&rft.issue=3-4&rft.spage=449&rft.epage=507&rft.pages=449-507&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-014-0552-1&rft_dat=%3Cproquest_cross%3E1685788756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671989846&rft_id=info:pmid/&rfr_iscdi=true