Noncommutative martingale deviation and Poincaré type inequalities with applications
We prove a deviation inequality for noncommutative martingales by extending Oliveira’s argument for random matrices. By integration we obtain a Burkholder type inequality with satisfactory constant. Using continuous time, we establish noncommutative Poincaré type inequalities for “nice” semigroups w...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2015-04, Vol.161 (3-4), p.449-507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a deviation inequality for noncommutative martingales by extending Oliveira’s argument for random matrices. By integration we obtain a Burkholder type inequality with satisfactory constant. Using continuous time, we establish noncommutative Poincaré type inequalities for “nice” semigroups with a positive curvature condition. These results allow us to prove a general deviation inequality and a noncommutative transportation inequality due to Bobkov and Götze in the commutative case. To demonstrate our setting is general enough, we give various examples, including certain group von Neumann algebras, random matrices and classical diffusion processes, among others. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s00440-014-0552-1 |