Experimental study of pipeline leak detection based on hoop strain measurement

Summary Pipelines are widely used for the transport of a large variety of fluids, such as natural gas, across long distances. While pipelines provide a convenient mode of transportation of fluids, their safe usage is one of the foremost concerns especially if their contents are harmful to the enviro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural control and health monitoring 2015-05, Vol.22 (5), p.799-812
Hauptverfasser: Jia, Zi-guang, Ren, Liang, Li, Hong-nan, Ho, Siu-Chun, Song, Gang-bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Pipelines are widely used for the transport of a large variety of fluids, such as natural gas, across long distances. While pipelines provide a convenient mode of transportation of fluids, their safe usage is one of the foremost concerns especially if their contents are harmful to the environment or if the hosting area is prone to third‐party intrusions. Thus, rapid detection and localization of pipeline leakage is paramount to the minimization of damage brought to the environment and stakeholders in the event of an unexpected leakage. In this work, a novel hoop strain based negative pressure wave (NPW) approach was used to detect and localize pipeline leakages in a 180 ft PVC pipeline equipped with five manually controllable leakage points. Using the new approach, both the arrival time of the NPW and the energy attenuation profile of the NPW can be used to detect and localize leakages with higher accuracy and in a wider variety of situations. The time of arrival approach allowed accurate (within 7.33% error) and repeatable localization of the leakage points; however, using the energy attenuation of the NPW, leakages with low leakage rates (
ISSN:1545-2255
1545-2263
DOI:10.1002/stc.1718