Electrical control of optical emitter relaxation pathways enabled by graphene

Controlling the energy flow processes and the associated energy relaxation rates of a light emitter is of fundamental interest and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. Advanced dielectric, semiconductor and metallic syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2015-03, Vol.11 (3), p.281-287
Hauptverfasser: Tielrooij, K. J., Orona, L., Ferrier, A., Badioli, M., Navickaite, G., Coop, S., Nanot, S., Kalinic, B., Cesca, T., Gaudreau, L., Ma, Q., Centeno, A., Pesquera, A., Zurutuza, A., de Riedmatten, H., Goldner, P., García de Abajo, F. J., Jarillo-Herrero, P., Koppens, F. H. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling the energy flow processes and the associated energy relaxation rates of a light emitter is of fundamental interest and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. Advanced dielectric, semiconductor and metallic systems have been developed to tailor the interaction between an emitter and its environment. However, active control of the energy flow from an emitter into optical, electronic or plasmonic excitations has remained challenging. Here, we demonstrate in situ electrical control of the relaxation pathways of excited erbium ions, which emit light at the technologically relevant telecommunication wavelength of 1.5 μm. By placing the erbium at a few nanometres distance from graphene, we modify the relaxation rate by more than a factor of three, and control whether the emitter decays into electron–hole pairs, emitted photons or graphene near-infrared plasmons, confined to
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys3204