Hourglass stabilization and the virtual element method

SummaryIn this paper, we establish the connections between the virtual element method (VEM) and the hourglass control techniques that have been developed since the early 1980s to stabilize underintegrated C0 Lagrange finite element methods. In the VEM, the bilinear form is decomposed into two parts:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2015-04, Vol.102 (3-4), p.404-436
Hauptverfasser: Cangiani, A., Manzini, G., Russo, A., Sukumar, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SummaryIn this paper, we establish the connections between the virtual element method (VEM) and the hourglass control techniques that have been developed since the early 1980s to stabilize underintegrated C0 Lagrange finite element methods. In the VEM, the bilinear form is decomposed into two parts: a consistent term that reproduces a given polynomial space and a correction term that provides stability. The essential ingredients of C0‐continuous VEMs on polygonal and polyhedral meshes are described, which reveals that the variational approach adopted in the VEM affords a generalized and robust means to stabilize underintegrated finite elements. We focus on the heat conduction (Poisson) equation and present a virtual element approach for the isoparametric four‐node quadrilateral and eight‐node hexahedral elements. In addition, we show quantitative comparisons of the consistency and stabilization matrices in the VEM with those in the hourglass control method of Belytschko and coworkers. Numerical examples in two and three dimensions are presented for different stabilization parameters, which reveals that the method satisfies the patch test and delivers optimal rates of convergence in the L2 norm and the H1 seminorm for Poisson problems on quadrilateral, hexahedral, and arbitrary polygonal meshes. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.4854