Effective Work Function Engineering for Aggressively Scaled Planar and Multi-Gate Fin Field-Effect Transistor-Based Devices with High-$k$ Last Replacement Metal Gate Technology

This work reports on aggressively scaled replacement metal gate, high-$k$ last devices (RMG-HKL), exploring several options for effective work function (EWF) engineering, and targeting logic high-performance and low-power applications. Tight low-threshold voltage ($V_{\text{T}}$) distributions for s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2013-04, Vol.52 (4), p.04CA02-04CA02-7
Hauptverfasser: Veloso, Anabela, Chew, Soon Aik, Higuchi, Yuichi, Ragnarsson, Lars-$Å$ke, Simoen, Eddy, Schram, Tom, Witters, Thomas, Van Ammel, Annemie, Dekkers, Harold, Tielens, Hilde, Devriendt, Katia, Heylen, Nancy, Sebaai, Farid, Brus, Stephan, Favia, Paola, Geypen, Jef, Bender, Hugo, Phatak, Anup, Chen, Michael S, Lu, Xinliang, Ganguli, Seshadri, Lei, Yu, Tang, Wei, Fu, Xinyu, Gandikota, Srinivas, Noori, Atif, Brand, Adam, Yoshida, Naomi, Thean, Aaron, Horiguchi, Naoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 04CA02-7
container_issue 4
container_start_page 04CA02
container_title Japanese Journal of Applied Physics
container_volume 52
creator Veloso, Anabela
Chew, Soon Aik
Higuchi, Yuichi
Ragnarsson, Lars-$Å$ke
Simoen, Eddy
Schram, Tom
Witters, Thomas
Van Ammel, Annemie
Dekkers, Harold
Tielens, Hilde
Devriendt, Katia
Heylen, Nancy
Sebaai, Farid
Brus, Stephan
Favia, Paola
Geypen, Jef
Bender, Hugo
Phatak, Anup
Chen, Michael S
Lu, Xinliang
Ganguli, Seshadri
Lei, Yu
Tang, Wei
Fu, Xinyu
Gandikota, Srinivas
Noori, Atif
Brand, Adam
Yoshida, Naomi
Thean, Aaron
Horiguchi, Naoto
description This work reports on aggressively scaled replacement metal gate, high-$k$ last devices (RMG-HKL), exploring several options for effective work function (EWF) engineering, and targeting logic high-performance and low-power applications. Tight low-threshold voltage ($V_{\text{T}}$) distributions for scaled NMOS devices are obtained by controlled TiN/TiAl-alloying, either by using RF-physical vapor deposition (RF-PVD) or atomic layer deposition (ALD) for TiN growth. The first technique allows optimization of the TiAl/TiN thicknesses at the bottom of gate trenches while maximizing the space to be filled with a low-resistance metal; using ALD minimizes the occurrence of preferential paths, at gate sidewalls, for Al diffusion into the high-$k$ dielectric, reducing gate leakage ($J_{\text{G}}$). For multi-gate fin field-effect transistors (FinFETs) which require smaller EWF shifts from mid-gap for low-$V_{\text{T}}$: 1) conformal, lower-$J_{\text{G}}$ ALD-TiN/TaSiAl; and 2) Al-rich ALD-TiN by controlled Al diffusion from the fill-metal are demonstrated to be promising candidates. Comparable bias temperature instability (BTI), improved noise behavior, and slightly reduced equivalent oxide thickness (EOT) are measured on Al-rich EWF-metal stacks.
doi_str_mv 10.7567/JJAP.52.04CA02
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685768183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685768183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b078655b3b2b07c16ad70792269838388db7749a851cd5770651f3928bc4e72d3</originalsourceid><addsrcrecordid>eNp1kUFvEzEQhS0EEqFw5WyhHhCSg-1drzfHEJKWKhUVBHFceb2zG1PH3tpOUf4VPxGXRVwAjayZkb73pPFD6CWjcykq-fbqankzF3xOy9WS8kdoxopSkpJW4jGaUcoZKRecP0XPYvyW10qUbIZ-rPsedDL3gL_6cIs3R5c37_DaDcYBBOMG3PuAl8MQIMYM2hP-rJWFDt9Y5VTAynX4-miTIRcqAd4Ylx_YjkzeeBeUiyYmH8g7FbPuPdwbDRF_N2mPL82wJ-e353irYsKfYLRKwwFcwteQlMW_PHeg985bP5yeoye9shFe_O5n6MtmvVtdku3Hiw-r5ZbooigTaamsKyHaouV51KxSnaQy318t6iJX3bVSlgtVC6Y7IWX-JdYXC163ugTJu-IMvZ58x-DvjhBTczBRg80ngz_GhlW1kFXN6iKj8wnVwccYoG_GYA4qnBpGm4domodoGsGbKZoseDUJzKjGP_Bf0Jt_QP9x_AmCeZpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685768183</pqid></control><display><type>article</type><title>Effective Work Function Engineering for Aggressively Scaled Planar and Multi-Gate Fin Field-Effect Transistor-Based Devices with High-$k$ Last Replacement Metal Gate Technology</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Veloso, Anabela ; Chew, Soon Aik ; Higuchi, Yuichi ; Ragnarsson, Lars-$Å$ke ; Simoen, Eddy ; Schram, Tom ; Witters, Thomas ; Van Ammel, Annemie ; Dekkers, Harold ; Tielens, Hilde ; Devriendt, Katia ; Heylen, Nancy ; Sebaai, Farid ; Brus, Stephan ; Favia, Paola ; Geypen, Jef ; Bender, Hugo ; Phatak, Anup ; Chen, Michael S ; Lu, Xinliang ; Ganguli, Seshadri ; Lei, Yu ; Tang, Wei ; Fu, Xinyu ; Gandikota, Srinivas ; Noori, Atif ; Brand, Adam ; Yoshida, Naomi ; Thean, Aaron ; Horiguchi, Naoto</creator><creatorcontrib>Veloso, Anabela ; Chew, Soon Aik ; Higuchi, Yuichi ; Ragnarsson, Lars-$Å$ke ; Simoen, Eddy ; Schram, Tom ; Witters, Thomas ; Van Ammel, Annemie ; Dekkers, Harold ; Tielens, Hilde ; Devriendt, Katia ; Heylen, Nancy ; Sebaai, Farid ; Brus, Stephan ; Favia, Paola ; Geypen, Jef ; Bender, Hugo ; Phatak, Anup ; Chen, Michael S ; Lu, Xinliang ; Ganguli, Seshadri ; Lei, Yu ; Tang, Wei ; Fu, Xinyu ; Gandikota, Srinivas ; Noori, Atif ; Brand, Adam ; Yoshida, Naomi ; Thean, Aaron ; Horiguchi, Naoto</creatorcontrib><description>This work reports on aggressively scaled replacement metal gate, high-$k$ last devices (RMG-HKL), exploring several options for effective work function (EWF) engineering, and targeting logic high-performance and low-power applications. Tight low-threshold voltage ($V_{\text{T}}$) distributions for scaled NMOS devices are obtained by controlled TiN/TiAl-alloying, either by using RF-physical vapor deposition (RF-PVD) or atomic layer deposition (ALD) for TiN growth. The first technique allows optimization of the TiAl/TiN thicknesses at the bottom of gate trenches while maximizing the space to be filled with a low-resistance metal; using ALD minimizes the occurrence of preferential paths, at gate sidewalls, for Al diffusion into the high-$k$ dielectric, reducing gate leakage ($J_{\text{G}}$). For multi-gate fin field-effect transistors (FinFETs) which require smaller EWF shifts from mid-gap for low-$V_{\text{T}}$: 1) conformal, lower-$J_{\text{G}}$ ALD-TiN/TaSiAl; and 2) Al-rich ALD-TiN by controlled Al diffusion from the fill-metal are demonstrated to be promising candidates. Comparable bias temperature instability (BTI), improved noise behavior, and slightly reduced equivalent oxide thickness (EOT) are measured on Al-rich EWF-metal stacks.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.52.04CA02</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><subject>Aluminides ; Aluminum ; Devices ; Diffusion ; Gates ; Intermetallics ; Tin ; Titanium base alloys ; Titanium compounds</subject><ispartof>Japanese Journal of Applied Physics, 2013-04, Vol.52 (4), p.04CA02-04CA02-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b078655b3b2b07c16ad70792269838388db7749a851cd5770651f3928bc4e72d3</citedby><cites>FETCH-LOGICAL-c334t-b078655b3b2b07c16ad70792269838388db7749a851cd5770651f3928bc4e72d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Veloso, Anabela</creatorcontrib><creatorcontrib>Chew, Soon Aik</creatorcontrib><creatorcontrib>Higuchi, Yuichi</creatorcontrib><creatorcontrib>Ragnarsson, Lars-$Å$ke</creatorcontrib><creatorcontrib>Simoen, Eddy</creatorcontrib><creatorcontrib>Schram, Tom</creatorcontrib><creatorcontrib>Witters, Thomas</creatorcontrib><creatorcontrib>Van Ammel, Annemie</creatorcontrib><creatorcontrib>Dekkers, Harold</creatorcontrib><creatorcontrib>Tielens, Hilde</creatorcontrib><creatorcontrib>Devriendt, Katia</creatorcontrib><creatorcontrib>Heylen, Nancy</creatorcontrib><creatorcontrib>Sebaai, Farid</creatorcontrib><creatorcontrib>Brus, Stephan</creatorcontrib><creatorcontrib>Favia, Paola</creatorcontrib><creatorcontrib>Geypen, Jef</creatorcontrib><creatorcontrib>Bender, Hugo</creatorcontrib><creatorcontrib>Phatak, Anup</creatorcontrib><creatorcontrib>Chen, Michael S</creatorcontrib><creatorcontrib>Lu, Xinliang</creatorcontrib><creatorcontrib>Ganguli, Seshadri</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Fu, Xinyu</creatorcontrib><creatorcontrib>Gandikota, Srinivas</creatorcontrib><creatorcontrib>Noori, Atif</creatorcontrib><creatorcontrib>Brand, Adam</creatorcontrib><creatorcontrib>Yoshida, Naomi</creatorcontrib><creatorcontrib>Thean, Aaron</creatorcontrib><creatorcontrib>Horiguchi, Naoto</creatorcontrib><title>Effective Work Function Engineering for Aggressively Scaled Planar and Multi-Gate Fin Field-Effect Transistor-Based Devices with High-$k$ Last Replacement Metal Gate Technology</title><title>Japanese Journal of Applied Physics</title><description>This work reports on aggressively scaled replacement metal gate, high-$k$ last devices (RMG-HKL), exploring several options for effective work function (EWF) engineering, and targeting logic high-performance and low-power applications. Tight low-threshold voltage ($V_{\text{T}}$) distributions for scaled NMOS devices are obtained by controlled TiN/TiAl-alloying, either by using RF-physical vapor deposition (RF-PVD) or atomic layer deposition (ALD) for TiN growth. The first technique allows optimization of the TiAl/TiN thicknesses at the bottom of gate trenches while maximizing the space to be filled with a low-resistance metal; using ALD minimizes the occurrence of preferential paths, at gate sidewalls, for Al diffusion into the high-$k$ dielectric, reducing gate leakage ($J_{\text{G}}$). For multi-gate fin field-effect transistors (FinFETs) which require smaller EWF shifts from mid-gap for low-$V_{\text{T}}$: 1) conformal, lower-$J_{\text{G}}$ ALD-TiN/TaSiAl; and 2) Al-rich ALD-TiN by controlled Al diffusion from the fill-metal are demonstrated to be promising candidates. Comparable bias temperature instability (BTI), improved noise behavior, and slightly reduced equivalent oxide thickness (EOT) are measured on Al-rich EWF-metal stacks.</description><subject>Aluminides</subject><subject>Aluminum</subject><subject>Devices</subject><subject>Diffusion</subject><subject>Gates</subject><subject>Intermetallics</subject><subject>Tin</subject><subject>Titanium base alloys</subject><subject>Titanium compounds</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kUFvEzEQhS0EEqFw5WyhHhCSg-1drzfHEJKWKhUVBHFceb2zG1PH3tpOUf4VPxGXRVwAjayZkb73pPFD6CWjcykq-fbqankzF3xOy9WS8kdoxopSkpJW4jGaUcoZKRecP0XPYvyW10qUbIZ-rPsedDL3gL_6cIs3R5c37_DaDcYBBOMG3PuAl8MQIMYM2hP-rJWFDt9Y5VTAynX4-miTIRcqAd4Ylx_YjkzeeBeUiyYmH8g7FbPuPdwbDRF_N2mPL82wJ-e353irYsKfYLRKwwFcwteQlMW_PHeg985bP5yeoye9shFe_O5n6MtmvVtdku3Hiw-r5ZbooigTaamsKyHaouV51KxSnaQy318t6iJX3bVSlgtVC6Y7IWX-JdYXC163ugTJu-IMvZ58x-DvjhBTczBRg80ngz_GhlW1kFXN6iKj8wnVwccYoG_GYA4qnBpGm4domodoGsGbKZoseDUJzKjGP_Bf0Jt_QP9x_AmCeZpQ</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Veloso, Anabela</creator><creator>Chew, Soon Aik</creator><creator>Higuchi, Yuichi</creator><creator>Ragnarsson, Lars-$Å$ke</creator><creator>Simoen, Eddy</creator><creator>Schram, Tom</creator><creator>Witters, Thomas</creator><creator>Van Ammel, Annemie</creator><creator>Dekkers, Harold</creator><creator>Tielens, Hilde</creator><creator>Devriendt, Katia</creator><creator>Heylen, Nancy</creator><creator>Sebaai, Farid</creator><creator>Brus, Stephan</creator><creator>Favia, Paola</creator><creator>Geypen, Jef</creator><creator>Bender, Hugo</creator><creator>Phatak, Anup</creator><creator>Chen, Michael S</creator><creator>Lu, Xinliang</creator><creator>Ganguli, Seshadri</creator><creator>Lei, Yu</creator><creator>Tang, Wei</creator><creator>Fu, Xinyu</creator><creator>Gandikota, Srinivas</creator><creator>Noori, Atif</creator><creator>Brand, Adam</creator><creator>Yoshida, Naomi</creator><creator>Thean, Aaron</creator><creator>Horiguchi, Naoto</creator><general>The Japan Society of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Effective Work Function Engineering for Aggressively Scaled Planar and Multi-Gate Fin Field-Effect Transistor-Based Devices with High-$k$ Last Replacement Metal Gate Technology</title><author>Veloso, Anabela ; Chew, Soon Aik ; Higuchi, Yuichi ; Ragnarsson, Lars-$Å$ke ; Simoen, Eddy ; Schram, Tom ; Witters, Thomas ; Van Ammel, Annemie ; Dekkers, Harold ; Tielens, Hilde ; Devriendt, Katia ; Heylen, Nancy ; Sebaai, Farid ; Brus, Stephan ; Favia, Paola ; Geypen, Jef ; Bender, Hugo ; Phatak, Anup ; Chen, Michael S ; Lu, Xinliang ; Ganguli, Seshadri ; Lei, Yu ; Tang, Wei ; Fu, Xinyu ; Gandikota, Srinivas ; Noori, Atif ; Brand, Adam ; Yoshida, Naomi ; Thean, Aaron ; Horiguchi, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b078655b3b2b07c16ad70792269838388db7749a851cd5770651f3928bc4e72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminides</topic><topic>Aluminum</topic><topic>Devices</topic><topic>Diffusion</topic><topic>Gates</topic><topic>Intermetallics</topic><topic>Tin</topic><topic>Titanium base alloys</topic><topic>Titanium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veloso, Anabela</creatorcontrib><creatorcontrib>Chew, Soon Aik</creatorcontrib><creatorcontrib>Higuchi, Yuichi</creatorcontrib><creatorcontrib>Ragnarsson, Lars-$Å$ke</creatorcontrib><creatorcontrib>Simoen, Eddy</creatorcontrib><creatorcontrib>Schram, Tom</creatorcontrib><creatorcontrib>Witters, Thomas</creatorcontrib><creatorcontrib>Van Ammel, Annemie</creatorcontrib><creatorcontrib>Dekkers, Harold</creatorcontrib><creatorcontrib>Tielens, Hilde</creatorcontrib><creatorcontrib>Devriendt, Katia</creatorcontrib><creatorcontrib>Heylen, Nancy</creatorcontrib><creatorcontrib>Sebaai, Farid</creatorcontrib><creatorcontrib>Brus, Stephan</creatorcontrib><creatorcontrib>Favia, Paola</creatorcontrib><creatorcontrib>Geypen, Jef</creatorcontrib><creatorcontrib>Bender, Hugo</creatorcontrib><creatorcontrib>Phatak, Anup</creatorcontrib><creatorcontrib>Chen, Michael S</creatorcontrib><creatorcontrib>Lu, Xinliang</creatorcontrib><creatorcontrib>Ganguli, Seshadri</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Fu, Xinyu</creatorcontrib><creatorcontrib>Gandikota, Srinivas</creatorcontrib><creatorcontrib>Noori, Atif</creatorcontrib><creatorcontrib>Brand, Adam</creatorcontrib><creatorcontrib>Yoshida, Naomi</creatorcontrib><creatorcontrib>Thean, Aaron</creatorcontrib><creatorcontrib>Horiguchi, Naoto</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veloso, Anabela</au><au>Chew, Soon Aik</au><au>Higuchi, Yuichi</au><au>Ragnarsson, Lars-$Å$ke</au><au>Simoen, Eddy</au><au>Schram, Tom</au><au>Witters, Thomas</au><au>Van Ammel, Annemie</au><au>Dekkers, Harold</au><au>Tielens, Hilde</au><au>Devriendt, Katia</au><au>Heylen, Nancy</au><au>Sebaai, Farid</au><au>Brus, Stephan</au><au>Favia, Paola</au><au>Geypen, Jef</au><au>Bender, Hugo</au><au>Phatak, Anup</au><au>Chen, Michael S</au><au>Lu, Xinliang</au><au>Ganguli, Seshadri</au><au>Lei, Yu</au><au>Tang, Wei</au><au>Fu, Xinyu</au><au>Gandikota, Srinivas</au><au>Noori, Atif</au><au>Brand, Adam</au><au>Yoshida, Naomi</au><au>Thean, Aaron</au><au>Horiguchi, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Work Function Engineering for Aggressively Scaled Planar and Multi-Gate Fin Field-Effect Transistor-Based Devices with High-$k$ Last Replacement Metal Gate Technology</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>52</volume><issue>4</issue><spage>04CA02</spage><epage>04CA02-7</epage><pages>04CA02-04CA02-7</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>This work reports on aggressively scaled replacement metal gate, high-$k$ last devices (RMG-HKL), exploring several options for effective work function (EWF) engineering, and targeting logic high-performance and low-power applications. Tight low-threshold voltage ($V_{\text{T}}$) distributions for scaled NMOS devices are obtained by controlled TiN/TiAl-alloying, either by using RF-physical vapor deposition (RF-PVD) or atomic layer deposition (ALD) for TiN growth. The first technique allows optimization of the TiAl/TiN thicknesses at the bottom of gate trenches while maximizing the space to be filled with a low-resistance metal; using ALD minimizes the occurrence of preferential paths, at gate sidewalls, for Al diffusion into the high-$k$ dielectric, reducing gate leakage ($J_{\text{G}}$). For multi-gate fin field-effect transistors (FinFETs) which require smaller EWF shifts from mid-gap for low-$V_{\text{T}}$: 1) conformal, lower-$J_{\text{G}}$ ALD-TiN/TaSiAl; and 2) Al-rich ALD-TiN by controlled Al diffusion from the fill-metal are demonstrated to be promising candidates. Comparable bias temperature instability (BTI), improved noise behavior, and slightly reduced equivalent oxide thickness (EOT) are measured on Al-rich EWF-metal stacks.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.52.04CA02</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2013-04, Vol.52 (4), p.04CA02-04CA02-7
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_miscellaneous_1685768183
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Aluminides
Aluminum
Devices
Diffusion
Gates
Intermetallics
Tin
Titanium base alloys
Titanium compounds
title Effective Work Function Engineering for Aggressively Scaled Planar and Multi-Gate Fin Field-Effect Transistor-Based Devices with High-$k$ Last Replacement Metal Gate Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Work%20Function%20Engineering%20for%20Aggressively%20Scaled%20Planar%20and%20Multi-Gate%20Fin%20Field-Effect%20Transistor-Based%20Devices%20with%20High-$k$%20Last%20Replacement%20Metal%20Gate%20Technology&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Veloso,%20Anabela&rft.date=2013-04-01&rft.volume=52&rft.issue=4&rft.spage=04CA02&rft.epage=04CA02-7&rft.pages=04CA02-04CA02-7&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.7567/JJAP.52.04CA02&rft_dat=%3Cproquest_cross%3E1685768183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685768183&rft_id=info:pmid/&rfr_iscdi=true