Effective Work Function Engineering for Aggressively Scaled Planar and Multi-Gate Fin Field-Effect Transistor-Based Devices with High-$k$ Last Replacement Metal Gate Technology
This work reports on aggressively scaled replacement metal gate, high-$k$ last devices (RMG-HKL), exploring several options for effective work function (EWF) engineering, and targeting logic high-performance and low-power applications. Tight low-threshold voltage ($V_{\text{T}}$) distributions for s...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2013-04, Vol.52 (4), p.04CA02-04CA02-7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work reports on aggressively scaled replacement metal gate, high-$k$ last devices (RMG-HKL), exploring several options for effective work function (EWF) engineering, and targeting logic high-performance and low-power applications. Tight low-threshold voltage ($V_{\text{T}}$) distributions for scaled NMOS devices are obtained by controlled TiN/TiAl-alloying, either by using RF-physical vapor deposition (RF-PVD) or atomic layer deposition (ALD) for TiN growth. The first technique allows optimization of the TiAl/TiN thicknesses at the bottom of gate trenches while maximizing the space to be filled with a low-resistance metal; using ALD minimizes the occurrence of preferential paths, at gate sidewalls, for Al diffusion into the high-$k$ dielectric, reducing gate leakage ($J_{\text{G}}$). For multi-gate fin field-effect transistors (FinFETs) which require smaller EWF shifts from mid-gap for low-$V_{\text{T}}$: 1) conformal, lower-$J_{\text{G}}$ ALD-TiN/TaSiAl; and 2) Al-rich ALD-TiN by controlled Al diffusion from the fill-metal are demonstrated to be promising candidates. Comparable bias temperature instability (BTI), improved noise behavior, and slightly reduced equivalent oxide thickness (EOT) are measured on Al-rich EWF-metal stacks. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.52.04CA02 |