Installation effects on the tonal noise generated by axial flow fans
The paper presents the results of experiments on a low-speed axial-flow fan flush mounted on flat panels typically employed in tests on automotive cooling fans. The experiments have been conducted in a hemi-anechoic chamber and were aimed at evaluating the installation effects of the whole test conf...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2015-03, Vol.340, p.167-189 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents the results of experiments on a low-speed axial-flow fan flush mounted on flat panels typically employed in tests on automotive cooling fans. The experiments have been conducted in a hemi-anechoic chamber and were aimed at evaluating the installation effects of the whole test configuration, including chamber floor and size and shape of the mounting panel. The largest panels cause important SPL variations in a narrow, low frequency range. Their effect on the propagation function has been verified by means of parametric BEM computations. A regular wavy trend associated with reflections from the floor is also present. In both cases, the tonal noise is more strongly affected than the broadband one.
The analysis is performed by means of an existing spectral decomposition technique and a new one, which allows to consider different noise generating mechanisms and also to separate the emitted tonal and broadband noise from the associated propagation effects. In order to better identify the features of the noise at the blade passing frequency (BPF) harmonics, the phase of the acoustic pressure is also analysed.
Measurements are taken during speed ramps, which allow to obtain both constant-Strouhal number SPL data and constant-speed data. The former data set is employed in the new technique, while the latter may be employed in the standard spectral decomposition techniques.
Based on both the similarity theory and the analysis of the Green׳s function of the problem, a theoretical description of the structure of the received SPL spectrum is given. Then, the possibility of discriminating between tonal and broadband noise generating mechanisms is analysed and a theoretical base for the new spectral decomposition technique is provided. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2014.12.009 |