A resistively heated CeB6 emissive probe
The plasma potential, V(p), is a key quantity in experimental plasma physics. Its spatial gradients directly yield the electrostatic field present. Emissive probes operating under space-charge limited emission conditions float close to V(p) even under time-varying conditions. Throughout their long h...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2015-05, Vol.86 (5), p.053507-053507 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The plasma potential, V(p), is a key quantity in experimental plasma physics. Its spatial gradients directly yield the electrostatic field present. Emissive probes operating under space-charge limited emission conditions float close to V(p) even under time-varying conditions. Throughout their long history in plasma physics, they have mostly been constructed with resistively heated tungsten wire filaments. In high density plasmas (>10(12) cm(-3)), hexaboride emitters are required because tungsten filaments cannot be heated to sufficient emission without component failure. A resistively heated emissive probe with a cerium hexaboride, CeB6, emitter has been developed to work in plasma densities up to 10(13) cm(-3). To show functionality, three spatial profiles of V(p) are compared using the emissive probe, a cold floating probe, and a swept probe inside a plasma containing regions with and without current. The swept probe and emissive probe agree well across the profile while the floating cold probe fails in the current carrying region. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.4921838 |