Alkane C–H Functionalization and Oxidation with Molecular Oxygen
The application of environmentally benign, cheap, and economically viable oxidation procedures is a key challenge of homogeneous, oxidative alkane functionalization. The typically harsh reaction conditions and the propensity of dioxygen for radical reactivity call for extraordinary robust catalysts....
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2015-06, Vol.54 (11), p.5043-5052 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of environmentally benign, cheap, and economically viable oxidation procedures is a key challenge of homogeneous, oxidative alkane functionalization. The typically harsh reaction conditions and the propensity of dioxygen for radical reactivity call for extraordinary robust catalysts. Mainly three strategies have been applied. These are (1) the combination of a catalyst responsible for C–H activation with a cocatalyst responsible for dioxygen activation, (2) transition-metal catalysts, which react with both hydrocarbons and molecular oxygen, and (3) the introduction of very robust main-group element catalysts for C–H functionalization chemistry. Herein, these three approaches will be assessed and exemplified by the reactivity of chelated palladium (N-heterocyclic carbene) catalysts in combination with a vanadium cocatalyst, the methane functionalization by cobalt catalysts, and the reaction of group XVII compounds with alkanes. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/ic502515x |