Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs

Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate digesta rate of passage and nutrient digestibility. Yet, the potential impact of indigestible markers on fecal microbial ecology and subsequent VFA generation is not known. Two experiments util...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2015-05, Vol.93 (5), p.2183-2190
Hauptverfasser: Kerr, B J, Weber, T E, Ziemer, C J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate digesta rate of passage and nutrient digestibility. Yet, the potential impact of indigestible markers on fecal microbial ecology and subsequent VFA generation is not known. Two experiments utilizing a total of 72 individually fed finishing pigs were conducted to describe the impact of dietary markers on fecal microbial ecology, fecal ammonia and VFA concentrations, nutrient digestibility, and pig performance. All pigs were fed a common diet with no marker or with 0.5% Cr2O3, Fe2O3, or TiO2. In Exp. 1, after 33 d of feeding, fresh fecal samples were collected for evaluation of microbial ecology, fecal ammonia and VFA concentrations, and nutrient digestibility, along with measures of animal performance. No differences were noted in total microbes or bacterial counts in pig feces obtained from pigs fed the different dietary markers while Archaea counts were decreased (P = 0.07) in feces obtained from pigs fed the diet containing Fe2O 3compared to pigs fed the control diet. Feeding Cr2O3, Fe2O3, or TiO2 increased fecal bacterial richness (P = 0.03, 0.01, and 0.10; respectively) when compared to pigs fed diets containing no marker, but no dietary marker effects were noted on fecal microbial evenness or the Shannon-Wiener index. Analysis of denaturing gradient gel electrophoresis gels did not reveal band pattern alterations due to inclusion of dietary markers in pig diets. There was no effect of dietary marker on fecal DM, ammonia, or VFA concentrations. Pigs fed diets containing Cr2O3 had greater Ca, Cu, Fe, and P (P ≤ 0.02), but lower Ti ( P= 0.08) digestibility compared to pigs fed the control diet. Pigs fed diets containing Fe2O3 had greater Ca (P = 0.08) but lower Ti (P = 0.01) digestibility compared to pigs fed the control diet. Pigs fed diets containing TiO2 had greater Fe and Zn (P ≤ 0.09), but lower Ti ( P= 0.01) digestibility compared to pigs fed the control diet. In Exp. 2, no effect of dietary marker on pig performance was noted. Overall, the data indicate that the inclusion of Cr2O3, Fe2O3, or TiO2 as digestibility markers have little to no impact on microbial ecology, fecal ammonia or VFA concentrations, nutrient digestibility, or pig growth performance indicating they are suitable for use in digestion studies.
ISSN:1525-3163
DOI:10.2527/jas.2014-8633