Responsive Inverse Opal Hydrogels for the Sensing of Macromolecules

Dual responsive inverse opal hydrogels were designed as autonomous sensor systems for (bio)macromolecules, exploiting the analyte‐induced modulation of the opal’s structural color. The systems that are based on oligo(ethylene glycol) macromonomers additionally incorporate comonomers with various rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2015-05, Vol.54 (22), p.6641-6644
Hauptverfasser: Couturier, Jean-Philippe, Sütterlin, Martin, Laschewsky, André, Hettrich, Cornelia, Wischerhoff, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dual responsive inverse opal hydrogels were designed as autonomous sensor systems for (bio)macromolecules, exploiting the analyte‐induced modulation of the opal’s structural color. The systems that are based on oligo(ethylene glycol) macromonomers additionally incorporate comonomers with various recognition units. They combine a coil‐to‐globule collapse transition of the LCST type with sensitivity of the transition temperature toward molecular recognition processes. This enables the specific detection of macromolecular analytes, such as glycopolymers and proteins, by simple optical methods. While the inverse opal structure assists the effective diffusion even of large analytes into the photonic crystal, the stimulus responsiveness gives rise to strong shifts of the optical Bragg peak of more than 100 nm upon analyte binding at a given temperature. The systems’ design provides a versatile platform for the development of easy‐to‐use, fast, and low‐cost sensors for pathogens. A successful marriage: The combination of smart hydrogels and inverse opal structures unites simplicity with efficacy for sensing macromolecules. While the inverse opal structure provides structural color and a large accessible interface for binding, the induced phase transition of the analyte‐responsive hydrogel produces strong optical effects. The resulting spectral shifts can surpass 100 nm and are easily detected.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201500674