Malleable and Self-Healing Covalent Polymer Networks through Tunable Dynamic Boronic Ester Bonds

Despite numerous strategies involving dynamic covalent bond exchange for dynamic and self-healing materials, it remains a challenge to be able to tune the malleability and self-healing properties of bulk materials through simple small molecule perturbations. Here we describe the use of tunable rates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-05, Vol.137 (20), p.6492-6495
Hauptverfasser: Cromwell, Olivia R, Chung, Jaeyoon, Guan, Zhibin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite numerous strategies involving dynamic covalent bond exchange for dynamic and self-healing materials, it remains a challenge to be able to tune the malleability and self-healing properties of bulk materials through simple small molecule perturbations. Here we describe the use of tunable rates of boronic ester transesterification to tune the malleability and self-healing efficiencies of bulk materials. Specifically, we used two telechelic diboronic ester small molecules with variable transesterification kinetics to dynamically cross-link 1,2-diol-containing polymer backbones. The sample cross-linked with fast-exchanging diboronic ester showed enhanced malleability and accelerated healing compared to the slow-exchanging variant under the same conditions. Our report demonstrates the possibility of transferring small molecule kinetics to dynamic properties of bulk solid material and may serve as a guide for the rational design of tunable dynamic materials.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.5b03551