Functional characterization of hesp018, a baculovirus-encoded serpin gene

The serpin family of serine proteinase inhibitors plays key roles in a variety of biochemical pathways. In insects, one of the important functions carried out by serpins is regulation of the phenoloxidase (PO) cascade - a pathway that produces melanin and other compounds that are important in insect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of general virology 2015-05, Vol.96 (Pt 5), p.1150-1160
Hauptverfasser: Ardisson-Araujo, Daniel M P, Rohrmann, George F, Ribeiro, Bergmann M, Clem, Rollie J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The serpin family of serine proteinase inhibitors plays key roles in a variety of biochemical pathways. In insects, one of the important functions carried out by serpins is regulation of the phenoloxidase (PO) cascade - a pathway that produces melanin and other compounds that are important in insect humoral immunity. Recent sequencing of the baculovirus Hemileuca sp. nucleopolyhedrovirus (HespNPV) genome revealed the presence of a gene, hesp018, with homology to insect serpins. To our knowledge, hesp018 is the first viral serpin homologue to be characterized outside of the chordopoxviruses. The Hesp018 protein was found to be a functional serpin with inhibitory activity against a subset of serine proteinases. Hesp018 also inhibited PO activation when mixed with lepidopteran haemolymph. The Hesp018 protein was secreted when expressed in lepidopteran cells and a baculovirus expressing Hesp018 exhibited accelerated production of viral progeny during in vitro infection. Expression of Hesp018 also reduced caspase activity induced by baculovirus infection, but caused increased cathepsin activity. In infected insect larvae, expression of Hesp018 resulted in faster larval melanization, consistent with increased activity of viral cathepsin. Finally, expression of Hesp018 increased the virulence of a prototype baculovirus by fourfold in orally infected neonate Trichoplusia ni larvae. Based on our observations, we hypothesize that hesp018 may have been retained in HespNPV due to its ability to inhibit the activity of select host proteinases, possibly including proteinases involved in the PO response, during infection of host insects.
ISSN:0022-1317
1465-2099
DOI:10.1099/vir.0.000041