An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment

Harvesting ambient mechanical energy is a green route in obtaining clean and sustainable electric energy. Here, we report an ultrarobust high-performance triboelectric nanogenerator (TENG) on the basis of charge replenishment by creatively introducing a rod rolling friction in the structure design....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-05, Vol.9 (5), p.5577-5584
Hauptverfasser: Guo, Hengyu, Chen, Jun, Yeh, Min-Hsin, Fan, Xing, Wen, Zhen, Li, Zhaoling, Hu, Chenguo, Wang, Zhong Lin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Harvesting ambient mechanical energy is a green route in obtaining clean and sustainable electric energy. Here, we report an ultrarobust high-performance triboelectric nanogenerator (TENG) on the basis of charge replenishment by creatively introducing a rod rolling friction in the structure design. With a grating number of 30 and a free-standing gap of 0.5 mm, the fabricated TENG can deliver an output power of 250 mW/m2 at a rotating rate of 1000 r/min. And it is capable of charging a 200 μF commercial capacitor to 120 V in 170 s, lighting up a G16 globe light as well as 16 spot lights connected in parallel. Moreover, the reported TENG holds an unprecedented robustness in harvesting rotational kinetic energy. After a continuous rotation of more than 14.4 million cycles, there is no observable electric output degradation. Given the superior output performance together with the unprecedented device robustness resulting from distinctive mechanism and novel structure design, the reported TENG renders an effective and sustainable technology for ambient mechanical energy harvesting. This work is a solid step in the development toward TENG-based self-sustained electronics and systems.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b01830