Dual PI3K/mTOR inhibition shows antileukemic activity in MLL-rearranged acute myeloid leukemia

In acute myeloid leukemia (AML), several signaling pathways such as the phosphatidylinositol-3-kinase/AKT and the mammalian target of rapamycin (PI3K/AKT/mTOR) pathway are deregulated and constitutively activated as a consequence of genetic and cytogenetic abnormalities. We tested the effectiveness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2015-04, Vol.29 (4), p.828-838
Hauptverfasser: Sandhöfer, N, Metzeler, K H, Rothenberg, M, Herold, T, Tiedt, S, Groiß, V, Carlet, M, Walter, G, Hinrichsen, T, Wachter, O, Grunert, M, Schneider, S, Subklewe, M, Dufour, A, Fröhling, S, Klein, H-G, Hiddemann, W, Jeremias, I, Spiekermann, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In acute myeloid leukemia (AML), several signaling pathways such as the phosphatidylinositol-3-kinase/AKT and the mammalian target of rapamycin (PI3K/AKT/mTOR) pathway are deregulated and constitutively activated as a consequence of genetic and cytogenetic abnormalities. We tested the effectiveness of PI3K/AKT/mTOR-targeting therapies and tried to identify alterations that associate with treatment sensitivity. By analyzing primary samples and cell lines, we observed a wide range of cytotoxic activity for inhibition of AKT (MK-2206), mTORC1 (rapamycin) and PI3K/mTORC1/2 (BEZ-235) with a high sensitivity of cells carrying an MLL rearrangement. In vivo PI3K/mTOR inhibition delayed tumor progression, reduced tumor load and prolonged survival in an MLL-AF9 + /FLT3-ITD + xenograft mouse model. By performing targeted amplicon sequencing in 38 MLL-AF9 + and 125 cytogenetically normal AML patient samples, we found a high additional mutation rate for genes involved in growth factor signaling in 79% of all MLL-AF9 + samples, which could lead to a possible benefit of this cohort. PI3K/mTOR inhibition for 24 h led to the cross-activation of the ERK pathway. Further in vitro studies combining PI3K/mTOR and ERK pathway inhibition revealed highly synergistic effects in apoptosis assays. Our data implicate a possible therapeutic benefit of PI3K/mTOR inhibition in the MLL -mutated subgroup. Inhibiting rescue pathways could improve the therapeutic efficacy of PI3K-targeted therapies in AML.
ISSN:0887-6924
1476-5551
DOI:10.1038/leu.2014.305