Diagnostic Performance of an Advanced Modeled Iterative Reconstruction Algorithm for Low-Contrast Detectability with a Third-Generation Dual-Source Multidetector CT Scanner: Potential for Radiation Dose Reduction in a Multireader Study

To assess the effect of radiation dose reduction on low-contrast detectability by using an advanced modeled iterative reconstruction (ADMIRE; Siemens Healthcare, Forchheim, Germany) algorithm in a contrast-detail phantom with a third-generation dual-source multidetector computed tomography (CT) scan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiology 2015-06, Vol.275 (3), p.735-745
Hauptverfasser: Solomon, Justin, Mileto, Achille, Ramirez-Giraldo, Juan Carlos, Samei, Ehsan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To assess the effect of radiation dose reduction on low-contrast detectability by using an advanced modeled iterative reconstruction (ADMIRE; Siemens Healthcare, Forchheim, Germany) algorithm in a contrast-detail phantom with a third-generation dual-source multidetector computed tomography (CT) scanner. A proprietary phantom with a range of low-contrast cylindrical objects, representing five contrast levels (range, 5-20 HU) and three sizes (range, 2-6 mm) was fabricated with a three-dimensional printer and imaged with a third-generation dual-source CT scanner at various radiation dose index levels (range, 0.74-5.8 mGy). Image data sets were reconstructed by using different section thicknesses (range, 0.6-5.0 mm) and reconstruction algorithms (filtered back projection [FBP] and ADMIRE with a strength range of three to five). Eleven independent readers blinded to technique and reconstruction method assessed all data sets in two reading sessions by measuring detection accuracy with a two-alternative forced choice approach (first session) and by scoring the total number of visible object groups (second session). Dose reduction potentials based on both reading sessions were estimated. Results between FBP and ADMIRE were compared by using both paired t tests and analysis of variance tests at the 95% significance level. During the first session, detection accuracy increased with increasing contrast, size, and dose index (diagnostic accuracy range, 50%-87%; interobserver variability, ±7%). When compared with FBP, ADMIRE improved detection accuracy by 5.2% on average across the investigated variables (P < .001). During the second session, a significantly increased number of visible objects was noted with increasing radiation dose index, section thickness, and ADMIRE strength over FBP (up to 80% more visible objects, P < .001). Radiation dose reduction potential ranged from 56% to 60% and from 4% to 80% during the two sessions, respectively. Low-contrast detectability performance increased with increasing object size, object contrast, dose index, section thickness, and ADMIRE strength. Compared with FBP, ADMIRE allows a substantial radiation dose reduction while preserving low-contrast detectability. Online supplemental material is available for this article.
ISSN:0033-8419
1527-1315
DOI:10.1148/radiol.15142005