Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption

Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-05, Vol.6 (1), p.6998-6998, Article 6998
Hauptverfasser: Ripepe, Maurizio, Donne, Dario Delle, Genco, Riccardo, Maggio, Giuseppe, Pistolesi, Marco, Marchetti, Emanuele, Lacanna, Giorgio, Ulivieri, Giacomo, Poggi, Pasquale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions. Volcanic eruptions are thought to restore equilibrium when overpressure in the crust is induced by new magma rising from depth. Here, the authors use data from the 2007 Stromboli eruption as well as models to suggest that eruption is instead a consequence of the gravity-driven instability of the volcanic edifice.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms7998