How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study
Herein we present a series of new α-iminopyridine-based iron-PNN pincer complexes [FeBr2LPNN] (1), [Fe(CO)2LPNN] (2), [Fe(CO)2LPNN](BF4) (3), [Fe(F)(CO)2LPNN](BF4) (4), and [Fe(H)(CO)2LPNN](BF4) (5) with formal oxidation states ranging from Fe(0) to Fe(II) (LPNN = 2-[(di-tert-butylphos...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2015-05, Vol.54 (10), p.4909-4926 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein we present a series of new α-iminopyridine-based iron-PNN pincer complexes [FeBr2LPNN] (1), [Fe(CO)2LPNN] (2), [Fe(CO)2LPNN](BF4) (3), [Fe(F)(CO)2LPNN](BF4) (4), and [Fe(H)(CO)2LPNN](BF4) (5) with formal oxidation states ranging from Fe(0) to Fe(II) (LPNN = 2-[(di-tert-butylphosphino)methyl]-6-[1-(2,4,6-mesitylimino)ethyl]pyridine). The complexes were characterized by a variety of methods including 1H, 13C, 15N, and 31P NMR, IR, Mössbauer, and X-ray photoelectron spectroscopy (XPS) as well as electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy, SQUID magnetometry, and X-ray crystallography, focusing on the assignment of the metal oxidation states. Ligand structural features suggest that the α-iminopyridine ligand behaves as a redox non-innocent ligand in some of these complexes, particularly in [Fe(CO)2LPNN] (2), in which it appears to adopt the monoanionic form. In addition, the NMR spectroscopic features (13C, 15N) indicate the accumulation of charge density on parts of the ligand for 2. However, a combination of spectroscopic measurements that more directly probe the iron oxidation state (e.g., XPS), density functional theory (DFT) calculations, and electronic absorption studies combined with time-dependent DFT calculations support the description of the metal atom in 2 as Fe(0). We conclude from our studies that ligand structural features, while useful in many assignments of ligand redox non-innocence, may not always accurately reflect the ligand charge state and, hence, the metal oxidation state. For complex 2, the ligand structural changes are interpreted in terms of strong back-donation from the metal center to the ligand as opposed to electron transfer. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.5b00509 |