Facile Photochemical Synthesis of Au/Pt/g‑C3N4 with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation
A novel plasmonic photocatalyst, Au/Pt/g-C3N4, was prepared by a facile calcination-photodeposition technique. The samples were characterized by X-ray diffraction, energy-dispersive spectroscopy, transmission electron microscopy, and UV–vis diffuse reflectance spectroscopy, and the results demonstra...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-05, Vol.7 (18), p.9630-9637 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel plasmonic photocatalyst, Au/Pt/g-C3N4, was prepared by a facile calcination-photodeposition technique. The samples were characterized by X-ray diffraction, energy-dispersive spectroscopy, transmission electron microscopy, and UV–vis diffuse reflectance spectroscopy, and the results demonstrated that the Au and Pt nanoparticles (7–15 nm) were well-dispersed on the surfaces of g-C3N4. The Au/Pt codecorated g-C3N4 heterostructure displayed enhanced photocatalytic activity for antibiotic tetracycline hydrochloride (TC-HCl) degradation, and the degradation rate was 3.4 times higher than that of pure g-C3N4 under visible light irradiation. The enhancement of photocatalytic activity could be attributed to the surface plasmon resonance effect of Au and electron-sink function of Pt nanoparticles, which improve the optical absorption property and photogenerated charge carriers separation of g-C3N4, synergistically facilitating the photocatalysis process. Finally, a possible photocatalytic mechanism for degrading TC-HCl by Au/Pt/g-C3N4 heterostructure was tentatively proposed. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b01212 |